DUAL THREE-PHASE ADJUSTABLE SPEED DRIVE WITH SYNCHRONIZED SPACE-VECTOR MODULATION 

V. Oleschuk, R. Prudeak, A. Sizov, E. Yaroshenko 
Resume.  Split-phase symmetrical motor drive on the base of two voltage source inverters, controlled by algorithms of synchronized pulse width modulation (PWM), has been investigated. Simulation results are presented for dual three-phase power conversion systems with continuous, discontinuous and combined versions of synchronized PWM. 
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AcţionĂrI  electricE  dublU  trifazatE  reglabilE  cu modulaŢIE  sincronĂ  SPAţial –VECTORIALĂ a  IMPulsurilor    
V. Olesciuk, R. Prudeac, A. Sizov, E. Iaroşenko 
             Resumat. A fost investigat sistemul de acţionare electrică pe baza a două invertoare de tensiune şi motorul electric asincron cu înfăşurări disjuncţionate tip simetric, reglate în corespundere cu algoritmii modulării sincrone a impulsurilor după durată. Sunt prezentate rezultatele modelării sistemelor de conversie trifazate duble cu diferite tipuri de modulaţie: continuu, discontinuu şi combinată.  
             Cuvinte cheie: acţionare electrică, înfăşurăre disjuncţionată; sistem de invertoare dublu; modulaţie sincronă a impulsului; sincronizarea tensiunilor de fază. 
СДВОЕННЫЙ ТРЕХФАЗНЫЙ РЕГУЛИРУЕМЫЙ ЭЛЕКТРОПРИВОД С СИНХРОННОЙ ВЕКТОРНОЙ МОДУЛЯЦИЕЙ
В.Олещук, Р. Прудяк, А. Сизов, Е.Ярошенко

Аннотация. Исследована система электропривода с двумя инверторами напряжения и асинхронным электродвигателем с расщепленными обмотками симметричного типа, регулируемая на базе алгоритмов синхронной широтно-импульсной модуляции. Приведены результаты моделирования сдвоенных трехфазных преобразовательных систем с непрерывной, прерывистой и комбинированной разновидностями синхронной векторной модуляции.  

Ключевые слова: электропривод с расщепленными фазами, сдвоенная инверторная система, широтно-импульсная модуляция, синхронизация фазного напряжения. 
1.  INTRODUCTION 

Multiphase, and, in particular, dual three-phase (six-phase) induction motor drives are a subject of increasing interest in the last years due to some advantages compared with conventional three-phase adjustable speed drives [1]-[5]. Ones of the perspective applications of the six-phase (split-phase) drives are now traction drive systems, in particular, hybrid electric vehicle drives, powered from fuel cell and battery [5]. 

Fig. 1 presents topology of the electrical vehicle system on the base of the split-phase (six-phase) induction motor supplied by two inverters with two different DC links: 1) Battery DC link with the Vdc1 voltage, and 2) Fuel Cell DC link with the Vdc2 voltage [5]. There are symmetrical and asymmetrical topologies of split-phase (dual three-phase) converters and drives. In particular, in the case of symmetrical dual three-phase systems the induction machine has two sets of winding spatially shifted by 60 electrical degrees with isolated neutral points [6]-[8]. 

[image: image1.emf]
Fig.1. The topology of the electrical vehicle system 

To provide increased efficiency of symmetrical six-phase drives, novel space-vector-based control and modulation strategies have been proposed and developed for these systems with the single DC-link [6]-[8]. It is known, that for drives with increased power rating it is necessary to synchronize voltage waveforms of power converters for elimination of undesirable sub-harmonics of voltage and current [9],[10]. So, this paper presents results of dissemination of novel method of synchronized PWM to symmetrical traction system with two DC voltage sources with different voltages. 

2.
BASIC  PROPERTIES  OF  SYNCHRONIZED  SCHEMES  OF  SPACE-VECTOR  MODULATION
In order to avoid asynchronism of conventional versions of voltage space-vector modulation, novel methods of synchronized PWM can be used for control of each inverter in symmetrical six-phase systems [11]. 

Figs. 2 - 3 present switching state sequences of standard three-phase voltage source inverter inside the interval 00-900. It illustrates schematically basic continuous (CPWM, Fig. 2) and discontinuous (DPWM, Fig. 3) versions of space-vector pulsewidth modulation, which are used typically in adjustable speed drive systems. 

The upper traces in Figs. 2 – 3 are switching state sequences (in accordance with conventional designation [11]), then - control signals for the cathode switches of the phases a, b, c (x, y, z) of each inverter. The lower traces in Figs. 2 - 3 show the corresponding quarter-wave of the line output voltage of inverters. Signals 
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 in Fig. 3) are formed in the clock-points (00, 600, 1200..) of the output curve of inverters with synchronous PWM. They are reduced simultaneously till close to zero value at the boundary frequencies 
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 between control sub-zones. This control principle provides continuous adjustment of the voltage waveforms of inverters, with smooth pulses-ratio changing. 
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Fig.2. Switching state sequences of standard three-phase voltage source inverter inside the interval 00-900
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Fig.3. Switching state sequences of standard three-phase voltage source inverter inside the interval 00-900
Equations (1)-(8) present a set of control functions for determination of parameters of signals of inverters with synchronized PWM in absolute values (seconds) for scalar V/F control mode of the system during the whole control range including the zone of overmodulation [11]: 

For j=2,...i-1:  


[image: image16.wmf]]

)

1

cos[(

1

3

1

ov

j

K

K

j

t

b

b

-

-

=

                                                 (1) 


[image: image17.wmf]2

3

1

]}

)

tan[(

87

.

0

5

.

0

{

ov

j

i

j

K

K

j

i

t

b

g

-

-

-

=

+

-

                                  (2) 


[image: image18.wmf]s

ov

i

K

K

K

i

]

)

1

cos[(

1

3

1

"

t

b

b

b

-

-

=

=

                                        (3) 


[image: image19.wmf]2

1

1

3

"

1

]}

2

/

)

(

)

2

tan[(

87

.

0

5

.

0

{

ov

s

i

i

i

K

K

K

i

-

-

+

+

+

-

-

-

=

l

b

b

t

b

g

                                      (4) 


[image: image20.wmf]2

/

)

(

1

+

+

-

=

j

j

j

b

b

t

l

                                                   (5) 


[image: image21.wmf](

)

s

ov

i

K

K

1

"

'

b

t

l

l

-

=

=

                                                  (6) 


[image: image22.wmf]t

)

1

2

(

6

1

-

=

i

F

i

                                                           (7) 


[image: image23.wmf]t

)

3

2

(

6

1

1

-

=

-

i

F

i

,                                                         (8) 

where: 
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 - total switch-on duration inside switching interval; 
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- minor parts of the total switch-on durations; 
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- duration of notches; 
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-switching interval (sub-cycle); m = F/Fm – modulation index; Fi and Fi-1 – boundary frequencies between control sub-zones (index i is equal to the number of notches inside a half of the 600-clock-intervals, including the notch on the border of the clock-intervals); 
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; K3=0 for CPWM, and K3=0.25 for DPWM. 

III.  SYNCHRONIZED  PWM  IN  SYMMETRICAL SIX-PHASE  TRACTION  SYSTEM   WITH  TWO  DC  VOLTAGE  SOURCES

Control of symmetrical six-phase induction machine drives is based on the 600-phase-shift of control and output signals of two inverters [6]-[8]. In accordance with the theory of vector space decomposition, the basic six-dimensional space (as, bs, cs, xs, ys, zs) of a dual-three phase induction machine with isolated neutral points can be transformed into two orthogonal two-dimensional subspaces (sa, sb) and (m1, m2) [1]. Voltage components Vsa and Vm1 in these subspaces, and also the phase voltage Vas = Vsa + Vm1 , are calculated for symmetrical six-phase system with two isolated neutrals as [7]: 

Vsa = 0.333(Va – 0.5Vb – 0.5Vc + 0.5Vx – Vy + 0.5Vz)                           (9) 

Vm1 = 0.333(Va – 0.5Vb –0.5Vc –  0.5Vx + Vy – 0.5Vz)                         (10) 
Vas = Vsa + Vm1 = Va - 0.333(Va + Vb + Vc)                                  (11) 

where Va, Vb, Vc, Vx, Vy, Vz are the corresponding pole voltages of each three-phase inverter. 

In this case, the Vsa component, which produces useful rotating MMF k-th order voltage harmonics (
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In order to provide equivalence of the output fundamental voltages of two inverters (with the same fundamental frequency) during scalar V/F control of the system, it is necessary to provide linear correlations between its modulation indices and magnitudes of the DC voltages:  
m1 Vdc1 = m2 Vdc2                                                         (12) 
Figs. 4 - 6 present the pole (Va and Vx), and phase Vas and Vxs voltages, and also the useful Vsa component of the phase voltage, of two inverters (with spectral characteristic of the Vsa voltage) of the six-phase system (Fig. 1) with two DC sources, where Vdc1 = 0.75Vdc2. Fig. 4 shows basic signals of the drive system with continuous synchronized PWM (CPWM). Fig. 5 presents the corresponding signals for the six-phase drive with discontinuous PWM with the 300-non-switching intervals (DPWM). Fig. 6 shows basic voltage waveforms for the system with combined CPWM+DPWM control. The switching and fundamental frequencies of each inverter are, respectively, equal to 900 Hz and 35 Hz (modulation indices of two inverters in accordance with (12) are equal correspondingly to m1 = 0.75 and m2 = 0.56). 
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Fig.4. Basic signals of the drive system with continuous synchronized PWM (CPWM)
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Fig.5. Signals for the six-phase drive with discontinuous PWM with the 300-non-switching intervals (DPWM) 
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Fig.6. Basic voltage waveforms for the system with combined CPWM+DPWM control 

The motor phase voltages Vas and Vxs of the six-phase vehicle drives with both continuous and discontinuous synchronized PWM have symmetry during the whole control range (see Figs. 4 - 6), and its spectra do not include even harmonics and sub-harmonics, which is especially important for high power/high current systems. 

Fig. 7 presents calculation results of Weighted Total Harmonic Distortion factor (WTHD) for the useful component Vsa of the phase voltage (averaged values of 
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Fig.7. Calculation results of Weighted Total Harmonic Distortion factor
The spectral characteristics, presented in Fig. 7, show, that algorithms of combined CPWM+DPWM synchronized PWM provide better spectral composition of the useful component of the phase voltage of symmetrical dual three-phase systems (in comparison with two identical (CPWM or DPWM) schemes of modulation for control of two inverters) during the whole linear control range. 

IV. CONCLUSIONS
Novel method of synchronized PWM has been disseminated for control of symmetrical split-phase (dual three-phase) traction system, powered from fuel cell and buttery. Control algorithms of synchronized PWM, based on space-vector approach for determination of the pulse patterns, allow minimum number of switchings in the system and minimal switching losses. The phase voltages of traction drive with synchronized PWM have quarter-wave symmetry during the whole control range, and its spectra do not contain even harmonics and sub-harmonics, which is especially important for the systems with increased power/current ratings. Combined scheme of synchronized PWM provide better spectral composition of the useful component of the phase voltage of symmetrical split-phase systems (in comparison with two identical PWM schemes for control of two inverters) during the whole linear control range. 
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