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Abstract. This paper addresses the challenges by enabling a novel Interleaved Boost-SEPIC converter
(IBSC) for improving the Photovoltaic (PV) system’s performance, controlled by a passivity-based
proportional integral control strategy. The use of non-interleaved converters in PV systems leads to
reduced efficiency due to challenges in controlling high-frequency switching, potentially resulting in
decreased energy conversion efficiency and increased losses. Additionally, non-interleaved converters
may exhibit weaker transient response characteristics, leading to slower voltage regulation and potential
instability under varying load conditions. There is also a higher risk of electromagnetic interference
(EMI) with non-interleaved converters, which can interfere with other electrical systems and equipment.
The main objectives of the study are to improve PV system’s performance by enhancing energy
conversion efficacy and to provide stable outcomes with improved transient response. These objectives
were achieved by the proposed IBSC, controlled by a passivity-based PI controller which aims for
efficient regulation of converter voltage output, ensuring high efficiency and rapid transient response.
The control scheme utilizes the converter's passive features to guarantee stable operation under various
operating conditions. MATLAB simulations establish the robustness of recommended control system,
the most important results are rapid transient response of 0.5s, high efficiency of 91% and robust
performance for the Boost-SEPIC converter in PV systems. The significance of obtained results includes
improved energy conversion, stable voltage regulation and enhanced reliability. On comparison, the
proposed concept outperforms conventional ones in terms of efficiency, ripple reduction and stability
making it a better solution for improving PV system performance.
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Abstract. Aceasta lucrare abordeaza provocarile prin activarea unui nou convertor Interleaved Boost-SEPIC
(IBSC) pentru Tmbunatatirea performantei sistemelor fotovoltaice (PV), controlate printr-o strategie de control
integral proportional bazata pe pasivitate. Utilizarea convertoarelor neintercalate in sistemele fotovoltaice duce la
o eficienta redusa din cauza provocarilor in controlul comutarii de inalta frecventa, ceea ce poate duce la scaderea
eficientei conversiei energiei si la cresterea pierderilor. In plus, convertoarele neintercalate pot prezenta
caracteristici de raspuns tranzitoriu mai slabe, ceea ce duce la o reglare mai lentd a tensiunii si la instabilitate
potentiald 1n conditii variate de sarcind. Exista, de asemenea, un risc mai mare de interferenta electromagnetica
(EMI) cu convertoarele neintercalate, care pot interfera cu alte sisteme si echipamente electrice. Obiectivele
principale ale studiului sunt de a Tmbunatati performanta sistemelor fotovoltaice prin imbunatatirea eficientei
conversiei energiei si de a oferi rezultate stabile cu un raspuns tranzitoriu imbunatatit. Aceste obiective au fost
atinse de IBSC-ul propus, controlat de un controler PI bazat pe pasivitate, care urmareste reglarea eficientd a
tensiunii de iesire a convertorului, asigurand o eficienta ridicata si un raspuns tranzitoriu rapid. Schema de control
utilizeaza caracteristicile pasive ale convertorului pentru a garanta o functionare stabild in diferite conditii de
functionare. Simuldrile MATLAB stabilesc robustetea sistemului de control recomandat, cele mai importante
rezultate sunt raspunsul tranzitoriu rapid de 0.5 s, eficientd ridicatda de 91% si performantd robustid pentru
convertorul Boost-SEPIC in sistemele fotovoltaice. Semnificatia rezultatelor obtinute include o conversie
imbunatatita a energiei, o reglare stabila a tensiunii si o fiabilitate sporita.

Cuvinte cheie: convertor Interleaved Boost-SEPIC (IBSC), control bazat pe pasivitate (PBC), sisteme fotovoltaice
(PV), controler proportional-integral (PI), modulare pe latime a impulsului.
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Annomayus. B paHHON cTaTbe paccMaTpUBAIOTCS MPOOJIEMBI, CBA3aHHBIE C HCIIONB30BAHHEM HOBOTO
npeobpaszosatens Interleaved Boost-SEPIC (IBSC) muist moBBIIIEHUS IPOU3BOUTENLHOCTH (POTOIIEKTPUUECKUX
(PV) cucrem, ynpaBiaseMOro CTpaTeTHed MpONOPLUUOHANBHOTO HMHTErPAJIbHOIO YIPABIEHUS Ha OCHOBE
naccuBHOCTH. Vcnonp3oBanue npeoOpaszoBarenei 6e3 uepesoBaHus B POTOAIEKTPHYECKUX CUCTEMAX MPHUBOJUT
K CHI)KEHHIO 3()()EeKTHBHOCTH M3-3a HPOOJIEM C yIpPaBJICHUEM BBICOKOYACTOTHBIM HEPEKIIOUECHHEM, YTO MOXKET
NPUBECTH K CHIDKEHHIO 3((EKTHMBHOCTH TNPeoOpa3oBaHWS SHEPrHMHM M YBEJIWYEHHIO TOoTepb. Kpome Toro,
npeobpa3oBarenu 0e3 YepeOBaHHS MOTYT JEMOHCTPUPOBATH Ooiee ciabble XapaKTEPUCTHKHA TEPEXOIHOTO
OTKJIMKA, YTO MPHUBOJUT K O0JIee MEAIEHHOMY PEeTyJIHPOBAHHIO HAIPSHKEHUSI U IIOTEHIIMAIBHON HECTAOMIBHOCTH
B YCIIOBHSIX M3MEHSIONIEHCS Harpysku. Taxke CymiecTByeT OoJiee BBICOKHH PHCK 3JIEKTPOMAarHUTHBIX ITOMEX
(EMI) c mpeobpazoBatensiMu 6e3 depeJoBaHMsI, KOTOPbIE MOTYT MEIIAaTh paboTe IPYTUX 3MEKTPHIECKUX CHCTEM
n obGopynoBanus. OCHOBHBIMH LEIAMH HCCIEJOBAaHMS SIBISIOTCA IIOBBIMICHHE IPOM3BOAMTEIHLHOCTH
(hOTOINNEKTPHUECKUX CHUCTEM 3a CUET IOBBIECHHS 3()(EKTHBHOCTH NPeoOpa3oBaHMs SHEPTHU W OOecIedeHHUe
CTaOMJIBHBIX PE3YyJIbTAaTOB C YJIYYIICHHBIM NEPEXOJHBIM OTKIMKOM. JTH LENU OBUTH JOCTHTHYTHI C MOMOIIBIO
npemiaraemoro IBSC, ympasisiemoro I[IM-peryisiTopoM Ha OCHOBE MAacCCHBHOCTH, KOTOPBI HampaBlieH Ha
3G (GeKTHBHOE  PEryJHpPOBAHHME BBIXOJHOTO  HANPSOIKCHUS  IpeoOpasoBaresisi, OOCCICUYHBAsl BBICOKYIO
3¢ PEeKTUBHOCT, M OBICTPBIA NEepPeXOAHbIH OTKIMK. CXxeMa yIpaBleHUS HCIOJIb3YyeT CBOICTBA MAaCCUBHOCTH
npeoOpasoBatenss Uit oOecredeHHs CTaOMIbHOH pabOThl B pa3iIMYHBIX YCIOBUSAX AKCIUTyaTallUH.
MogenupoBanne MATLAB ycraHaBiMBaeT HaJle)KHOCTb PEKOMEH/IYyEMOW CHCTEMBbI YINpaBJeHUs, Hauboyee
Ba)XHBIMH DE3yJbTaTaMHU SIBISIIOTCSI OBICTPBIM nepexonHblil oTkmuk 0.5 c, BeIcokas sddexruBHOCTE 91% n
HazexHas padota mpeodpasosatens Boost-SEPIC B ¢oroanekrprnuecknx cucremax. 3HAYMMOCTD ITOTYYEHHBIX
pe3yIbTaTOB BKJIIOYACT YIIyUIICHHOE NPeoOpa3oBaHHE SHEPTUH, CTAOMIBHOE PETYIMPOBAHUE HANPSDKEHHUS U
TIOBBINICHHYIO HaaexXHOCTh. [Ipn cpaBHeHNH IpezsiaraeMasi KOHIEIINS TPEBOCXOANUT CYNIECTBYIOIUE C TOUKH
3peHust 3QPEKTUBHOCTH, CHI)KEHHS ITyJIbCALMH M CTaOMIIBHOCTH, YTO JIeJIaeT €€ MHOTOOOCIIAIOINM PEIICHHEM

JUISL YITy4IIEHHS TIPOU3BOUTEIILHOCTH (POTORIIEKTPHIECKOH CHCTEMBI.
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Kniouesvie cnosa: depenyronmiics: nmopeimaromuii nmpeoopazosarens SEPIC (IBSC), maccuBHOe ympaBieHHe
(PBC), ¢doroanexrpuueckue (PV) cucremsl, nmponopruoHanbHO-uHTEerpansHbiii (P1) kxoHTpomiep, mumpoTHO-

HUMITYJIbCHasd MOAYJISIUA.

I. INTRODUCTION

In response to escalating energy demands and
environmental concerns, renewable energy
sources, particularly solar PV technologies, have
garnered substantial attention [1-6]. PV systems
enable efficient use of solar energy to generate
electrical power, which, when coupled with
appropriate converters, can be effectively utilized.

The deployment of non-isolated DC-DC
converters in solar applications has been
extensively explored, with boost converter.
However, the high duty ratio operation of these
converters leads to undesirable parasitic effects
[7]. Although the 3-level boost converter offers a
large voltage gain, it suffers from high switch
voltage stress [8].

Despite advancements, coupled inductor-
based converter topologies continue to face
challenges like current and voltage stress,
switching  losses, and  electromagnetic
interference. These challenges are critical as they
affect the reliability and efficiency of PV systems,
which are essential for sustainable energy
solutions. Interleaved converters have emerged as
promising alternatives, minimizing ripple current
and reducing the size of filters and current stress
[9-13]. By combining the outputs of multiple
converter channels, interleaved converters can
handle higher power levels. Additionally,
interleaved converters is easily scaled by adding
more channels, making them versatile for an
extensive range of power levels and applications.
The High Gain DC-DC Converter [18] has high
efficiency, optimal power extraction and flexible
voltage conversion. However, it has high
complexity, cost and maintenance. Then, the
Interleaved Boost Converter (IBC) [19] has
reduced ripple, improved performance, better
MPPT performance. However, it has Intricacy,
Expenses. The Interleaved high step up converter
[20] has minimized voltage stress, high voltage
gain, adjustable voltage gain and stress, reduced
conduction losses, active clamp scheme. It has the
drawbacks of complexity in terms of design, lead
to higher costs, troubleshooting. Subsequently,
the Three-Phase Interleaved Boost Converter [21]
has reduced ripple, improved dynamic
performance, direct battery connection, high
efficiency and robust performance. However, it
has advanced control algorithms, specialized
components and higher maintenance
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requirements. The Interleaved hybrid Boost
converter has reduced input ripple, cost reduction,
extended service lifespan. Nevertheless, it
requires a higher level of expertise,
troubleshooting.

Conventional  proportional-integral ~ (PI)

controllers have been extensively employed to
control voltage output of boost converters.
However, it has poor performance in quickly
varying environmental conditions, like changing
temperature or irradiance. It lacks adaptability,
leading to slow dynamic response and steady state
errors during transient conditions [14, 15].
Furthermore, it is sensitive to variations of system
parameter and not inherently manage
uncertainties in the PV system. Improper tuning
of the PI gains also cause instability that
diminishes system efficacy and stressing power
electronic components [16, 17]. This work
introduces several novel contributions aimed at
overcoming the limitations of existing converter
technologies and control strategies:
A novel Interleaved Boost-SEPIC
converter design that boosts the PV output source,
offering reduced ripple, wvariable voltage
conversion, and greater efficiency.

e A PBC is employed for output voltage
management, ensuring stability and robust
performance.

The subsequent parts of the manuscript is
structured with  description of suggested
methodology in section 2, detailed system
modelling in section 3, discussions on the
simulation results and in-depth analysis of
experimental findings in section 4 and the key
outcomes of the research are summarized in the
form of conclusion in section 5.

II. PROPOSED METHODOLOGY
The PV system is at the core, generating 7,
(PV voltage) and 7, (PV current) from sunlight.

These outputs are then fed into the interleaved
Boost-SEPIC converter. This converter serves to
raise the PV panel's low voltage output to a level
where grid integration is possible. The interleaved
configuration of the converter is crucial as it helps
reduce ripple current, which improves the
efficiency of the overall system.
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Fig. 1. Block diagram of the developed model

The passivity-based approach offers improved
stability and robustness. It does so by leveraging
the inherent passivity properties of the system,
ensuring stable operation under a wide range of
conditions. The regulated output voltage, denoted
as Vpc, is crucial for ensuring stable power
delivery to the DC load. This DC load could be
any electrical device or system that requires
power. PWM pulses are generated by the PWM
generator, which determines duty cycle of the
converter's switches, thereby regulating an output
voltage. It showcases advancements in renewable
energy integration and power electronics control,
highlighting the potential for efficient and reliable
solar energy utilization.

ITII. SYSTEM MODELLING

A. Interleaved Boost-SEPIC Converter

A power converter type for enhancing the
voltage of PV system [18] that includes the
characteristics of both boost and SEPIC
converters is called an Interleaved Boost-SEPIC
converter, which is showcased in Fig. 2.

Dz

o
|
]

Fig. 2. Modelling of an Interleaved Boost-SEPIC
converter.

Mode 1:

In stage 1 when s,is active and S, remains
inactive and in Diode, D,is ON and D, is OFF as
seen in Fig. 2 (a). Capacitor ¢, discharges to
stabilize the output, while ¢, charges to maintain

a continuous and stable output voltage. This
balanced operation ensures efficient energy
transfer and minimal ripple in output current,
enhancing the performance of the converter.

Fig. 2 Stages of Interleaved Boost-SEPIC
converter (a) Stage 1 (b) Stage 2 (c) Stage 3 (d)

Stage 4
On applying KVL,
Ve =V, =0V, =V, (1)
V., -V, =0=V, =V, )
Vey =V, =V =0 3
Vo =V, + Vg, (4)
Veo = Ve, = Vo 6))

On substituting equation (5) in equation (4),

Vi, =V -V, (6)

Mode 2:
In stage 2, the s, is inactive and s, is active as

seen in Fig. 2 (b). During this mode, the inductors
L, and L, undergo a discharge process, releasing

their stored energy, while the inductor r, is
actively charged. Concurrently, diode D, is in the
inactive state, preventing current flow through it,
whereas diode D, is on, allowing current to pass
through. This configuration ensures that the
capacitors ¢, and C, are charged.

On applying KVL,
Viy = VL, (7
Viv _VL2 - Vo + VL3 =0 (8)

Using the average of these voltages,
Vo —0-V, +0-0=V,, =V, 9)

VL3 =Veo =V, (10)

By equation (9) and equation (10) in equation
(8),
Viy =V, = Voy + Vg = 0= Vi, =V, (1D

Mode 3:
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In mode 3, §,and s, remains active and the D,

and p, is inactive as seen in Fig. 2 (c). During this
phase, the inductors £,,Z, and L, begin to charge,

storing energy from the input power source.
Concurrently, the capacitors ¢, and C, are in a

state of discharge. An energy stowed in these
capacitors is released, with ¢ discharging

directly to provide power to load.

Vey =V, =V, (12)

Mode 4:

During this stage, both s, and s, are inactive

as seen in Fig. 2(d). Consequently, both diodes D,
and p, are on. Moreover, in this phase, the
inductors Z,,Z, and L, are in discharging state,
releasing their stored energy. Simultaneously, the
capacitors C, and C, are actively charging. Fig. 3

provides the operational waveforms of the
converter.

On applying Volt second balance equation,

(VL2 ,swclosed)(DT)+(VL2 ,swopen)(l—D)T =0 (13)

On substituting equation (1) equation (11) in equation

(10),
(14)

On solving equation (14), in the proposed

Vey (DT)+(V, )(1-D), =0

IBSC, the voltage gain is,

VO
VPV

D
1-D

(15)

I gmax + 1y min

T

Fig. 3. Waveforms of the developed converter

Design Considerations
The inductor's values are provided as,

L= Vey (mm)

S AL xf (16)
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Where, the term Vpy(min) refers to the
minimum input voltage

1=t Do (—I_P ] (17)
AL, f
The value of capacitors is given as,
C - 3:IO><D (18)
Cxf

1-D)7V,
=D (19)

AV, /R,
In comparison to employing a single

converter, the utilization of an Interleaved Boost
SEPIC converter with a PBC improves efficiency,
lowers ripple, boosts reliability, increases power
density, and improves dynamic responsiveness.
The behaviour of the interleaved Boost-SEPIC
converter with the passivity-PI controller darting
repeated decreases or increases in solar flux over
reduced time intervals, the controller sustain a
stable power output although these oscillations.

B. Passivity Based PI Controller

In an Interleaved Boost-SEPIC converter,
output voltage is largely managed by the PBC
[25]. A PBC is based on the principles of energy
based control and system reliability, assures the
stable and robust performance of power electronic
converters in dynamic conditions. This controller
is formulated utilizing the Port Controlled
Hamiltonian (PCH) model that models the energy
dynamics of the system by considering both
stored energy and dissipation. The PBC offers
improved voltage regulation, fast transient
response, diminished steady state error and

enhanced system reliability under varying
conditions.
The transfer function of PI controller is,
U(s) K;
GPI(S) = m = Kp + ? (20)

Where, an integral gain is denoted by K;,
proportional gain is K, and Laplace variable is s.

The following is the dynamic system's PCH
form expression:

' oH(x)
x=[J(x)-R(x)|.——=+{+g(x)u
e L

The state vector is denoted byx € R"; the
interconnection and dissipation matrices are/,
R" — R""andR(x)=R"(x),  respectively; # :
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R"—R is the function of total stored energy; g :
R" — R™ matrix input; ¢ external force; and,
accordingly, the output function and control
action are,u,yeR" ,m<n .

A dynamic system's stored energy function

described as follows when looking at it from an
energy perspective:
H(x)z%xTQx (22)
Where,

x=(x1,x2)T =(LiC ~v)T x1, andx2 Q € R™"

is a diagonally symmetric matrix that
represents the capacitance's charge and the
inductance flux, while the inductance the

O=diag {1/ L,1/ C} and the circuit characteristics.

J(x):((l) ‘OIJ,R(X){S I/OR};:(E,O)T,...
g(X)=(_X;I//CLJ

where ¥ :=x-x" and acceptable equilibrium
point of xis x.

(23)

H, (x)%fQ; (24)

Let us assume

J,(x)==J; (x),R,(x)=R;(x)=0are matrices.
Given H, (x), such that

x" =argminH, (x) (25)

Assuming u=p(x)exists, the following is an

expression for the closed-loop dynamic system
27).

X:[Jd(x)—Rd(x)]aHg(X) (26)
X

With x* a steady state of balance. Based on
principle of La Salle's invariant, if the major
collection of invariants produced by the closed-
loop dynamics (28) in

T
{X o] () , M (x)
| ox ox

- 0} 27)

Comes to{x*}. Asymptotically stable then is
the closed-loop system.

Equation 26 is obtained by replacing (25)
withu = B(x). The storage function's time
derivative is produced since negative symmetric
matrix is J;(x) and a positive symmetric matrix
isR4(x).

H, (x) = —[aH;X(X)JT R, aH(;X(X) <0 (28)

Consequently, H,(x)be thought of as a

Lyapunov function and stable equilibrium point is

x . In result (21) and principle of La Salle's
invariant, the system’s dynamic asymptotic
stability is demonstrated.

O-R (x 6Hd(x):
R
[J(x) (X)Jﬂ+g+g(x)u

Considering that
H,(x)= H(x)+ H,(x),J,(x) = J(x) +J,(x),
R,(x) = R(x)+R,(x),u=4d
is duty ratio of an IGBT and
K(x) = 0H,(x)/ox = 0H,(x)/ox—0H (x)/ox .
LetJ,(x) =0,R,(x) = diag(r1,1/r2), where rl
and 2 are injected virtual impedances. Then, (29)
is mentioned as follows

OH, (x
[T,(x)-Ry(x)] 6)5 ):
OH(x)

[ () -R ()=~

Where

0 1 T, 0
J*‘(X):(—l oj’(x):(o l/rz—l/RJ’ 31)

K(x):(—xf /L-x, /C)

(30)
+g+g(x)u

X—lerflxl +%x2 +E
. (32)
x, I 1-d 1 1
—— =X, t—X, ——X,
Cr, L r,C RC

Here, by changing x,,x, and (31), we obtain

I'n=ir,+v(d-1)+E (33)
A vV v

—=i(l-d)+——— 34
L, 1( )+r2 R 34
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The duty ratio be derived here, where the
predicted steady state values of v and; are 7" and

s

1.

B V—E+I‘1(I*—i)

d= 35)

v
The law of conservation of energy is able to be
used to determine the connection between output
voltage and inductance current at steady-state
values, assuming that the DC/DC converter's loss
is eliminated. As soon as the system achieves a
condition of stability, that is

v
" ER

When (34) and (35) are combined, the duty
ratio is

*

(36)

dzv—E+rl(V*2/ER—i)

v

(37

Firstly, the PV system harnesses renewable
solar energy, providing a sustainable power
source. Secondly, the IBSC efficiently regulates
the voltage output, ensuring optimal power
transfer from the PV system. Additionally, the
PBC enhances stability and responsiveness,
effectively managing fluctuations in solar
irradiance and load variations.

IV. RESULTS AND DISCUSSION

SOLAR PANEL TEMPERATURE WAVEFORM
T T T T

The significance of the developed Interleaved
Boost-SEPIC converter and PBC approach in PV
systems is demonstrated through MATLAB
simulation. The performance of developed
converter along with passivity based control is
evaluated under four different test cases.

Table 1
Parameter Specification
Parameter | Rating
PV System
Current (Short Circuit) 8.954
Voltage (Open Circuit) 37.25V
Maximum Peak Voltage 29.95V
Total Power 10KW
Maximum Peak Current 8.354
Peak Power 150w
Interleaved Boost-SEPIC Converter
L, L, 5.5mH
L TmH
Input Capacitor, c, 870uF
Output ¢, capacitor 2200uF
Load 100Q

Case 1: Under Constant Condition

In Case 1, the functioning of the Interleaved
Boost-SEPIC converter is seen in Fig. 4.
Specifically, the solar intensity is kept constant at
1000 W /m? and the temperature is stabilized
at 25°C.

SOLAR PANEL IRRADIATION WAVEFORM
T T T T

40

30-

20+

Temperature(C)

10-

o . ‘ |

Irradiation(W/Sq.m)

|
0.1 0.2 0.3 0.4
Time(s)

(a)

0.5

=
2
=
=]

w
=
=]

o

I I I
0.2 0.3 0.4
Time(s)

b

I
0.1

o

0.5

Fig. 4. Solar Panel Waveform.

The waveform in Fig. 5 shows a constant
voltage level of 117V, indicating a reliable and
stable electrical supply from the PV system. In
addition to the steady voltage, the current

SOLAR PANEL VOLTAGE WAVEFORM

43A  without
smooth and

at
a

waveform also stabilizes
distortion, demonstrating
uninterrupted flow of current.

SOLAR PANEL CURRENT WAVEFORM

0.2 0.3
Time(s)

(a)

0.1

0.3
Time(s)

(b)

0.1 0.2 0.5

Fig. S. Solar Panel Voltage and Current Waveform.

The voltage steadies at 305V in the provided
Fig. 6, demonstrating a constant and steady
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voltage level at that particular moment.
Furthermore, the current waveform stays constant
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at 15A, signifying a steady and uninterrupted
current flow. This stability indicates that the PBC

CONVERTER OUTPUT VOLTAGE WAVEFORM USING

PASSIVITY BASED PI CONTROLLER
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it at a precise level.
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Fig. 6(a). Waveform of converter output voltage utilizing PBC and (b) Converter output current.

The Fig. 7 illustrates a consistent power flow
of 5000 watts without any distortion. This
indicates a stable and uninterrupted transfer of
electrical power.
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Fig. 7. Solar Panel input power waveform.

The diagram Fig. 8 displays a distortion-free
steady power flow of 4575W, signifying a steady
and uninterrupted flow of electrical power.
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USING PI CONTROLLER
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Fig. 8. Converter Output Power Waveform.

Fig. 9 illustrates the converter output voltage
waveforms using two different control strategies:
PI controller and PBC. The PBC demonstrates a
more controlled and rapid rise in the output
voltage, reaching approximately 300V without
significant overshoot. The voltage stabilizes
almost immediately, within 0.05 seconds,
indicating a faster response time.

CONVERTER OUTPUT VOLTAGE WAVEFORM USING
PASSIVITY BASED PI CONTROLLER
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Fig. 9 (a). Waveform of converter output voltage utilizing PI controller and (b) output voltage waveform
utilizing PBC.
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Fig. 10. Output waveform under varying load condition (a) Voltage (b) Current.

Fig. 10 (a) represents the waveform of output
voltage with PBC. The output voltage is gradually
raised and by applying load the variations are
occurred in voltage. With the aid of PBC, the
voltage is settled at a steady value of 280 V with
little fluctuations. The waveform of output
current is illustrated in Fig. 10 (b). The output

current is slowly improved and is varied due to the
load. By exploiting the PBC, the current is
maintained at 14 A with little oscillations.
Case 2: Under Constant Temperature and Varying
Intensity

In this scenario, the temperature remains
constant while the irradiation varies. The
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waveform Fig. 11 indicates a stable and constant
temperature level, stabilizing at35°C.
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Concurrently, the sun's irradiation also stabilizes
at a consistent level of 1000(w/sq.m).
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Fig. 11. Waveform of solar panel temperature and irradiation.

In the diagram Fig. 12, the voltage waveform first
stabilizes before increasing to 117V and staying

150 SOLAR PANEL VOLTAGE WAVEFORM

there. The current waveform, at 43A, is stable and
distortion-free at the same time.

"
o
e

Voltage(V)
«
3

C]

SOLAR PANEL CURRENT WAVEFORM

0.2 0.3 0.4
Time(s)

(a)

0.1

o

0.2 0.3 0.4
Time(s)

®)

0.1 0.5

Fig. 12. Waveform of solar panel voltage and current.

Figure 13 (a) shows the waveform rising to
305V at first, then stabilizing and remaining there.

CONVERTER OUTPUT VOLTAGE WAVEFORM USING
PASSIVITY BASED PI CONTROLLER
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At first, Fig. 13 (b) displays a rising waveform,
followed by distortion-free stabilization at 15A.
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Fig. 13. (a) PBC. Waveform using converter output and (b) Current waveform of converter output.

A steady, distortion-free power flow of 5022 W at
0.25 S is depicted in the Fig. 14.
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Fig. 14. Waveform of solar panel input power

The Fig. 15 shows a steady power flow of
4575W without distortion at 0.25 seconds,
implying a constant and reliable supply of
electricity.
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Fig. 15. Waveform of converter output power

182

Case 3: Under Shaded Conditions

In this scenario, the proposed converter and its
controller are subjected to a test environment
where the PV array experiences partial shading
conditions.

The waveform in the illustration Fig. 16 shows
how it gradually decreases from 50 cells to 45
cells before continuing to flow smoothly and
distortion-free. This steady flow after a slow
decline points to a regulated and reliable
operation.

NUMBER OF CELLS FOR PARTIAL SHEADING EFFECT

0.2 0.3 0.4
Time(s)

0.1 0.5

Fig. 16. Number of cells for partial sheading effect

At 0.25 seconds, the waveform in Fig. 17 (a)
shows a constant, undistorted 110 volt flow. This
indicates a constant voltage level, which is
necessary to ensure that electrical systems and
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other equipment that rely on this voltage operate
as intended. Fig. 17 (b)'s waveform displays an

SOLAR PANEL VOLTAGE WAVEFORM

uninterrupted, steady flow of 40 amps at 0.25
seconds.
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Fig. 17. Waveform of voltage and current in PV system

The Fig. 18 shows a constant, distortion-free
power flow of 4525 W at 0.25 S. It shows that
electrical power is being transferred steadily and
continuously.
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Fig. 18. Input power waveform of solar panel

The Fig. 19 implies a consistent and
dependable supply of electricity by displaying a
continuous power flow of 4000W without
distortion at 0.25 seconds.
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Fig. 19. Power waveform of converter output

The plot Fig. 20 illustrates the ripple in the
input current (measured in amperes) for three
distinct converters: SEPIC, Boost, and the
converter under proposal. The suggested
converter has the lowest ripple over the whole
voltage range.

— BOOST
| SEPIC CONVERTER |

COMVERTER
PROPOSED

18 20 22 24 26 28
INPUT VOLTAGE (V)

30

INPUT CURRENTRIPPLE (A)

Fig. 20. Input Current Ripple

The table 2 lists various bidirectional and
unidirectional converter topologies for power
applications. The efficacy of PV system is nearly
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85% and after developing the Interleaved Boost-
SEPIC converter the efficacy is enhanced to
91%.

—

Pl ol TL;'M
- =

Fig. 21. Functional diagram

Fig. 21 represents the functional diagram of
developed system in MATLAB. The PV array is
linked to an IBSC converter reduces the current
ripple. Then, the PBC manages the developed
converter to assure the steady voltage in
changing conditions.

Table 2
Comparison of developed with some approaches
Ref Efficacy
[27] 85.35
[28] 90.6
[29] Not Indicated
[30] 88
[31] 90
Developed 91

Table 3 compares the performance of
different controllers including PI controller,
Fuzzy controller, Sliding mode controller,
Neural network controller, Genetic Algorithm
(GA)-PI controller, Particle Swarm Optimization
(PSO)-PI controller, Crow Search Optimization
(CSO)-PI controller and proposed PBC. The
PBC exhibits the best overall performance
among the controllers evaluated. It achieves the
shortest settling time of 0.05 seconds, The PBC
also demonstrates the lowest overshoot of 0.5%.
In terms of rise time, the PBC again outperforms
others with a rapid rise time of 0.1 seconds.
Additionally, the PBC achieves the lowest
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steady-state error of 0.05%, showcasing its
precision in maintaining the desired output
without significant deviation. When considering
efficiency, the PBC leads with an impressive

efficiency of 91%, highlighting its superior
capability in converting input power to output
power effectively.

Table 3
Performance Comparison of Various Controllers with PBC
Settling | Overshoot . . Steady-State Efficiency
Controller Time (s) (%) Rise Time (s) Error (%) (%)
PI Controller 0.12 5 0.18 0.5 85
Fuzzy Controller 0.12 2 0.15 0.3 85.3
Sliding Mode 0.13 3 0.16 0.4 85.2
Controller
Neural Network | 2 0.14 0.2 86
Controller
GA-PI Controller 0.14 4 0.17 0.45 88.5
PSO-PI Controller 0.12 2 0.15 0.3 88
CSO-PI Controller 0.1 2 0.13 0.1 89
Passivity-Based PL | 5 0.5 0.1 0.05 91
Controller
V. DISCUSSIONS by indorsing effective and consistent renewable

The findings from the MATLAB simulations
demonstrate that the proposed Interleaved Boost-
SEPIC converter, controlled by a PBC,
significantly enhances the performance of PV
systems. With an efficiency of 91%, indicating its
potential for high-efficiency energy conversion in
renewable energy applications. The minimal
overshoot (0.5%) and rapid rise time (0.1
seconds) underscore the controller's capability to
provide stable and precise voltage regulation.

Future research can explore the scalability of
this converter for larger PV systems and its
integration with other renewable energy sources.
Limitations:

One key limitation is the complexity involved
in the design and implementation of the passivity-
based control strategy, which may pose
challenges in practical applications. Additionally,
the converter's performance under extremely high
or low input conditions and its scalability to larger
systems have not been thoroughly investigated.

VI. CONCLUSION

This research presents a unique Interleaved
Boost-SEPIC converter with a PBC designed to
enhance the performance of PV systems. The
Interleaved Boost-SEPIC converter enhances the
voltage of PV system with reduced switching
losses. Then, the PBC assures stable and accurate
voltage regulation that enhances the reliability in
PV systems. The overall system demonstrates
robustness in managing fluctuating the irradiance
and load changes. It aids the sustainability goal

energy utilization. The developed research is
implemented in MATLAB/Simulink tool,
proving its efficacy and applicability in real world
renewable energy applications. Future research
will focus on scaling the converter for larger PV
systems, incorporating it with HRES and
performing experimental validations to validate
simulation outcomes. The outcomes contribute a
substantial step toward advancing -effective,
stable and sustainable energy conversion in PV
systems.
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