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Hybrid Chaotic Attractor Recurrent Network Transnet Architecture for
Accurate State of Charge Estimation of Li-lon Batteries in EV Application
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Abstract. Main objectives of the study are to design and validate a novel state of charge (SoC) estimation
framework for Lithium-lon Batteries (LIBs) in Electric Vehicle (EV) Energy Storage Systems (ESSS),
integrating the chaotic attractor recurrent network (CARN) with transformer techniques. This hybrid
approach aims to overcome limitations in conventional battery management systems (BMSSs),
particularly in handling noisy inputs, long-range dependencies, and data imbalance. These objectives
were achieved by implementing a structured methodology that incorporates data balancing to mitigate
skewed datasets, exploratory data analysis (EDA) for anomaly detection and pattern recognition, and
feature scaling for input normalization, thereby ensuring robust and effective model training. The hybrid
classification model leverages the temporal pattern recognition capability of ARN alongside the strong
attention mechanism of the Transformer, enabling superior adaptability under diverse operating
conditions. Implemented in Python, the proposed method was rigorously tested across multiple
scenarios to confirm its reliability and accuracy. The most important results are the reduced root mean
square error (RMSE) of 0.9671, mean square error (MSE) of 0.9352, mean absolute error (MAE) of
0.793, and an enhanced R2-score of 99.86%, which collectively demonstrate significant improvements
over conventional estimation techniques. The significance of obtained results lies in validating the
proposed model’s ability to deliver highly accurate, robust, and real-time SoC prediction, thereby
contributing to safer and more efficient battery management in EVs. This study highlights the potential
of hybrid deep learning architectures to advance ESS safety, optimize energy utilization, and support
sustainable electric mobility.
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Arhitecturi hibridd CARN-Transnet pentru estimarea precisi a SOC-ului bateriilor Li-ion
in aplicatiile EV
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Abstract. Obiectivele principale ale studiului sunt proiectarea si validarea unui cadru inovator de estimare a stirii
de incarcare (SoC) pentru bateriile litiu-ion (LIB) din sistemele de stocare a energiei (ESS) ale vehiculelor electrice
(EV), integrand reteaua recurenta de atractori haotici (CARN) cu tehnici de transformare. Aceastd abordare hibrida
vizeaza depdsirea limitarilor sistemelor conventionale de gestionare a bateriilor (BMS), in special in ceea ce
priveste gestionarea intrarilor zgomotoase, dependentele pe termen lung si dezechilibrul datelor. Aceste obiective
au fost atinse prin implementarea unei metodologii structurate care include echilibrarea datelor pentru a atenua
seturile de date distorsionate, analiza exploratorie a datelor (EDA) pentru detectarea anomaliilor si recunoasterea
modelelor, precum si scalarea caracteristicilor pentru normalizarea intrarilor, asigurand astfel o instruire robusta
si eficienta a modelului. Modelul de clasificare hibrid utilizeaza capacitatea de recunoastere a modelelor temporale
a ARN impreund cu mecanismul puternic de atentie al Transformer, permitdnd o adaptabilitate superioara in
diverse conditii de functionare. Implementata in Python, metoda propusa a fost testata riguros In mai multe scenarii
pentru a confirma fiabilitatea si acuratetea sa. Cele mai importante rezultate sunt reducerea erorii medii patrate
(RMSE) 1a 0.9671, a erorii medii patrate (MSE) la 0.9352, a erorii medii absolute (MAE) la 0.793 si imbunatatirea
scorului R? la 99.86%, care demonstreaza In ansamblu imbunatatiri semnificative fata de tehnicile de estimare
conventionale. Semnificatia rezultatelor obtinute consta in validarea modelului propus.

Cuvinte-cheie: baterii litiu-ion, sisteme de management al bateriilor, retea recurenta de atractie haotica (CARN)
si transformator, prelucrarea datelor, analiza exploratorie a datelor, Python.
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I'n6punnas apxurektypa Carn-Transnet /sl TOUHOI OlleHKH YPOBHS 3aps/ia JUTHI{-HOHHBIX
AKKYMYJIITOPOB B 3JICKTPOMOOHISAX
Y, Jiuna Kymapu, }JI. Pasu Kumope, ?M. Iagan Kansn, K. bxasanu lankap, ?K. Caii Kpumna
Tno6anbreiit yausepcuret INogasapu, Pajpkaxmyuapy, Uuans
2HMucTuryT nrxenepur u Texnonoruii logasapu (A), Pamkaxmysapu, Uuaus

Annotanusi. OCHOBHBIMU LIEJISIMH MCCIICIOBAHUS SIBJISIIOTCS pa3pabOTKa M BalWAAsd HOBOW CUCTEMBI OLICHKH
ypoBas 3apsana (SoC) nutuii-noHHsIX Oatapeit (LIB) B cuctemax xpanenus snepruu (ESS) anexrpomotbuneii (EV)
MyTeM MHTETpaIii peKyppeHTHOH ceTn xaotudeckoro arrpakTopa (CARN) ¢ texHonmorusmu TpanchopmaTopa.
OT1oT THOPHIHBIA MOAXOJ HAMpaBICH HA MNPEOJOJICHWE OTPAaHWYCHHH TPAJAWIMOHHBIX CHCTEM YIIPaBICHHSA
6arapesmu (BMS), B wacTHOCTH 1TpH 00pabOTKe 3aTyMIICHHBIX BXOTHBIX JaHHBIX, JOJTOCPOYHBIX 3aBHCHMOCTEH
U aucOanaHca JaHHBIX. OTH LEMU ObUTH AOCTUTHYTHI 332 CYET BHEIPEHHS CTPYKTYPHUPOBAHHON METOJOJIOTHH,
KOTOpasl BKJIIOYAaeT B ceOs OamaHCHPOBKY IaHHBIX JUIA CMSTYEHHS WCKaKCHHBIX HaOOpOB [aHHBIX,
SKCIUTOpaTOpHEI aHamm3 maHHBIX (EDA) mns oOHapy:XeHHsS aHOMaMi M paclio3HaBaHHA 00pa3oB, a TaKXKe
MaclTabupOBaHUE XapaKTEPUCTHK Uil HOPMalM3allMM BXOIHBIX JIaHHBIX, 4YTO OOecreuyrnBacT HaJeKHOE H
3¢ dexTuBHOE 00ydYeHHMe Mopenu. ['mOpumHas Mojaeiab KiacCH(UKAIMH HKCHOJB3yeT cmocoOHocTh ARN k
pacro3HaBaHUIO BPEMEHHBIX IaTTEPHOB Hapsily € MOIIHBIM MeXaHM3MOM BHHMMaHusi Transformer, uto
obecrieuynBaeT MPEBOCXOIHYIO aIallTUBHOCTD B Pa3JIMYHbIX YCIOBUX IKCIUTyaTaluy. PeannzoBanHslil Ha Python,
NPe/II0KEHHBIH METOJl ObUT TIIATENFHO MPOTECTUPOBAH B HECKOJIBKUX CHECHApPUSX Ul MOATBEPIKICHHUS €ro
HaJe)KHOCTH M TOYHOCTH. Hambonee BaKHBIMH pe3yJbTaTaMM SIBISIOTCS CHIDKEHHE CPEAHEKBAaIPaTHYHOM
ommoku (RMSE) no 0.9671, cpenneit kBagpatuuHoit ommbku (MSE) mo 0.9352, cpenHeit aOCOMIOTHOM OMIMOKH
(MAE) mo 0.793 n mnoseimenue kodp¢unuenta R? g0 99.86 %, 9TO B COBOKYIHOCTH JEMOHCTPHPYET
3HAYUTEIbHBIC YIy4YLIEHUS IO CPAaBHEHHUIO C TPAJUIHMOHHBIMM METOJAM{ OLCHKH. 3HAUCHHE ITOJyYCHHBIX
PE3yNIBTAaTOB 3aKIIOYAETCS B IIOATBEP)KACHUH JOCTOBEPHOCTH MPEATI0KEHHOW MOCIH.

Kniwouegvle cnosa. IMTHH-NOHHBIE AKKyMYJSATOPBI, CHCTEMBI YIPABICHHS aKKyMyJSTOpaMH, XaoTHYECKas
arTpaktopHas pekyppeHtHas cetb (CARN) um Tpanchopmarop, oOpaboTKa IaHHBIX, pa3BENOYHBIH aHAJIH3
JaHHBIX, Python.

INTRODUCTION issue, as discrepancies between theoretical and
real-world conditions increase [2]. Lastly,
inconsistencies among LIB units compromise the
performance and stability of battery packs,
especially in BEV applications. Methods
developed for small-scale batteries often prove
inadequate when applied to large-scale systems,
making precise SoC estimation a significant
challenge. Therefore, the development of
sophisticated SoC estimation techniques is
urgently needed to address these limitations.
Accurate battery state estimation is a core feature
of modern BMSs in BEVSs, enabling stable and
efficient battery use while laying the foundation
for improved safety oversight [3].

Energy Storage Systems (ESSs) are pivotal
technologies for the future development of EVs
and smart grid infrastructures. Among these,
lithium-ion batteries represent the most rapidly
expanding ESS solution. However, despite their
growing prevalence, critical issues related to the
safety and effective management of LIBs remain
unresolved. As a result, battery management
systems have emerged as an essential component
in the electrification of battery electric vehicles,
offering a suite of functionalities designed to
ensure safe and efficient battery operation. In
recent years, the creation of intelligent and
advanced state-of-charge estimation methods for

LIBs has become a highly active field of research. . LITHIUM-ION BATTERY:

Yet, progress is hindered by several technological

challenges [1].

e Firstly, the nonlinear behaviour of LIBs
stemming from their multi-scale architecture
(ranging from individual materials to full
battery packs) and evolving characteristics

Lithium-ion batteries offer several key
advantages, including high energy and power
densities, extended cycle life, strong adaptability
to environmental conditions, and elevated cell
voltage. Materials used in lithium-ion battery
. . cells perform optimally within a defined safe

over time (such as ageing) makes accurate operating window. This window outlines the

modelling cgmplex. . acceptable temperature and voltage ranges, along
o Secondly, internal battery conditions are  \yith the maximum allowable current during both
difficult to monitor and are highly sensitive to ¢parging and discharging processes [4]. There are
changes in external environmental conditions. multiple types of lithium-ion chemistries, each

_ The transition from laboratory-scale 10 \yith jts unique strengths. For instance, Lithium
industrial-scale LIBs further exacerbates this
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Cobalt Oxide (LCO) is known for its high specific
energy, while Lithium Manganese Oxide (LMO)
provides excellent specific power. Nickel Cobalt
Aluminium (NCA) and Nickel Manganese Cobalt
(NMC) batteries are cost-effective and exhibit
strong thermal stability. Lithium Iron Phosphate
(LFP) batteries are characterised by a flat Open-
Circuit Voltage (OCV) curve, but they typically
have lower capacity and higher self-discharge
rates. Meanwhile, Lithium Titanate (LTO)
batteries excel in fast charging and long service
life, though they have lower specific energy and
come at a higher cost [5].

I1. BATTERY MANAGEMENT SYSTEM:

BMS incorporate multiple functions that
monitor and control battery performance across

individual cells, modules, and entire battery
packs. As batteries age, their energy storage
capacity diminishes. This degradation s
represented by the state of health, while the
Remaining Useful Life (RUL) refers to the
expected duration or number of charge-discharge
cycles left before reaching End of Life (EoL). Fig.
1, amodern BMS also deliver precise estimates of
key parameters such as the SoC, SoH, RUL,
capacity, and available power. These estimations
are derived from continuous monitoring of
current, voltage, and temperature. Among these,
SoC estimation is particularly vital, yet achieving
accurate and real-time results is challenging due
to the battery’s complex and nonlinear
electrochemical behaviour with the evolving
characteristics associated with ageing [6]

BATTERY MANAGEMENT SYSTEM (BMS)
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Fig. 1. Role of Battery Management’System.

A Dbattery management system integrates
hardware and software to regulate battery
operating conditions with the goal of extending
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battery lifespan, ensuring safety, and providing
accurate assessments of various battery states for
energy management purposes [7].
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Fig. 2. Battery management in EV.

BMS incorporates various sensor networks to
monitor and measure critical battery parameters,
including current, voltage, and temperature, Fig.
2. However, acquiring highly accurate data
outside of controlled laboratory settings is
challenging due to equipment costs and spatial
limitations. Temperature plays a crucial role in
cell reliability and performance, and thermal
imbalances lead to degradation. Once a BMS has

acquired the necessary data, it operates
autonomously. With advancements in smart
battery technologies, it is now possible for the
charger and battery to exchange detailed
operational data, enhancing system coordination
and efficiency [8].

State of charge estimation techniques are
broadly categorised into five main types:
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Coulomb Counting Methods (CCMs), Open-
Circuit Voltage Methods (OCVMs), Impedance
Spectroscopy-Based Methods (ISBMs), Model-
Based Methods (MBMs), and those utilising
Neural Networks (NNBMs) [9]. The coulomb
counting method is among the simplest and most
easily implemented techniques for estimating a
battery's state of charge, requiring minimal
computational power. It works by integrating the
current over time during charging and discharging
processes. However, its accuracy is compromised
by external factors such as electrical noise,
temperature fluctuations, and current
measurement errors, which introduce uncertainty
into the estimation [10]. The open-circuit voltage
method is a highly accurate and simple approach
for estimating the state of charge, making it easy
to implement. Nevertheless, its primary limitation
lies in the extended time required for the battery
to reach a stable equilibrium state. Due to this
delay, the OCV method is unsuitable for real-time
SoC estimation and is therefore better suited for
applications with low power demands where
immediate response is not critical [11]. The
impedance and internal resistance of lithium-ion
batteries characterise their intrinsic electrical
behaviour under various current stimuli, provided
that temperature, SoC and SoH remain constant.
Though  measuring  Electrical  Impedance
Spectroscopy (EIS) in real-time is challenging
due to several factors, it often requires sinusoidal
Alternating Current (AC), the correlation between
impedance and SoC is not consistent, and the
associated equipment is costly. Determining
internal resistance involves applying Direct
Current (DC) and capturing voltage and current
over brief time intervals. Yet, internal resistance
evolves gradually, making it difficult to track
effectively for accurate SoC estimation. As a
result, SoC estimation methods based on
impedance and internal resistance are generally
unsuitable for electric vehicle applications [12].
The model-based methods depend on accurate
battery models to estimate the state of charge with
precision. However, the internal parameters of a
battery continuously change during charging and
discharging cycles, making it challenging to
develop a single model that reliably captures all
external behaviours of the battery [13]. Various
types of neural networks and related
methodologies are widely used for capturing and
modelling the nonlinear relationships between a
system’s inputs and outputs [14]. A Deep Neural
Network (DNN) model estimates the SOC of
lithium-ion batteries used in electric vehicles. The
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DNN’s architecture, with adequately sized hidden
layers, enables it to predict SOC for previously
unseen drive cycles during training. A range of
DNN configurations, varying in hidden layer
count and training algorithms, leads to reduced
prediction error and more accurate SOC
estimation. Moreover, DNN is limited by
validation, making its reliability and
generalisation in battery systems not yet fully
established [15]. The Feed-Forward Neural
Network (FFNN) is used to estimate SoC
prediction, the single-layer FFNN effectively
modelled and predicts SOC across the dataset,
with the exception of instances where the SOC
approached the maximum value of 100% [16]. Bi-
LSTM (Bidirectional Long Short-Term Memory)
enhances SOC estimation accuracy by using two
LSTM layers that process input sequences both
forward and backwards, capturing comprehensive
temporal dependencies. Though, Bi-LSTM offers

high SOC estimation accuracy at room
temperature, its performance significantly
degrades under extremely low-temperature

conditions [17]. To overcome these limitations,
this research proposes a novel CARN integrated
with  transformer architecture, the RNN
components enhance the model’s ability to retain
and process sequential information over time,
capturing short-term dependencies in SoC
dynamics. The chaotic behaviour represents
nonlinear patterns and the Transformer’s attention
mechanism for long-range sequence learning,
ensures improved robustness and accuracy across
varying  operational and  environmental
conditions.

The contributions of proposed SoC estimation
model are listed below:
The collected raw sensor data is cleaned,
normalised, and balanced to ensure robust
model performance across various operating
conditions.
Exploratory data analysis performed in-depth
analyse to understand patterns, detect
anomalies, and assess feature relevance,
guiding subsequent modelling steps.
Feature engineering derives meaningful input
variables from raw data to enhance the
predictive capability of the model, including
temporal dynamics and interaction terms.
Data Splitting segregates the dataset into
training and testing subsets to validate the
model’s  generalisation  ability, using
structured trip-based partitioning.
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CARN-Transformer is
combines a convolutional attention residual

integrated, which

network and transformer mechanisms for
accurate SOC estimation.

Table 1

Related works of SoC estimation in LiB for EV systems.

Ref.No

Author & Title | Methodology used | Operations

Limitations

Eymen IPEK et
al “A novel

XGBoost estimates
SOC by training on
labelled Dbattery data

Its effectiveness in
SOC estimation is

XGBoost (Extreme | using the | limited by the
?sf:;(;?i;?wroil.iﬁ Gradient Boosting) | “XGBRegressor’, availability and
118] | ion batteries Is used to estimate | learning patterns | quality of training
using a_hvbrid SOC under | through supervised | data, requiring well-
macﬁine y dynamic operating | learning, and then | characterised
learnin conditions validating its prediction | operational profiles to
techni %e,, accuracy with similar | perform reliably even
d test data to model SOC | with minimal data.
as a regression problem.
Obuli Pranav D. | Gaussian  Process .
et al “Enhanced | Regression (GPR) GPR AL SOC_by
O ) : using a kernel function . .
SOC estimation | is  designed for to model the correlation However, it is
of lithium-ion | modelling the between data  points computationally
[19] | batteries  with | complex while optimisin pnoise intensive and  less
RealTime data | relationship and corrr)1 lexit gtrade- scalable for large
using machine | between real-time offs to er?sure );ccurate datasets.
learning driving data and . o
A battery SOC. and flexible predictions.
f—]arinara anan RF estimates SoC by
y“ . . using an ensemble of
et al SOC | Machine learning e .
estimation for a | technology, based decision trees to capture | Yet, its performance
lithium-ion random ’ forest complex patterns in | declines when faced
[20] ouch cell usina | method is battery data, delivering | with unfamiliar load
Ewachine g resenté q for | MOre accurate, reliable | profiles or insufficient
learnina  under gstimatin SoC predictions under real- | training models.
. g g ' world driving
different  load T
el conditions.
Sadiga Jafari et
al “Efficient
state of charge | Extra Tree .
estimation ?n Regressor (ETR) is U e_mploys ensem_ble Ji 8 il glepende_nt
electric vehicles | presented for Iearn_lng % a_ggregatmg on dz_ylta_quallty, and its
[21] batteries based | effectivel multiple decision trees | predictive  accuracy
on the extra tree | ore dictiny the SoC to reduce overfittingand | and  generalizability
regressor: A gf EVs g improve robustness. are influenced.
data-driven
approach”
Muhammad ANNs, known for their
Adib Kamali et This study utilises strong adaptability to
al “ANN-based data-driven  SOC nonlinear systems, are
[22] State of Charge estimation based on increasingly used to | It requires manual

Estimation  of
Li-ion Batteries
for Embedded
Applications

an artificial neural
network (ANN).

model the relationship
between measured
battery data and SOC,
demonstrating reliable

parameter tuning.
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PROPOSED SYSTEM DESCRIPTION

The accuracy of the SoC estimation is crucial
for ensuring the reliable and efficient operation of
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L BATTERY PACK TEMPERATURE E

SCALING

performance across

different battery ageing

levels.

LiB in EV systems. The proposed work

introduces a hybrid architecture leveraging the
chaotic attractor recurrent network with a
transformer, which is depicted in Fig. 3
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Fig. 3. Proposed SoC estimation of LiB model.

The real-time battery parameters such as
voltage, current, temperature and ambient
temperature data are collected from the battery
management system. The raw data collected is
pre-processed by handling missing values,
enhancing the quality of the data. The pre-
processed data is rescaled to a specific range, to
ensure faster convergence throughout the system.
The feature-scaled data are visually analysed
through EDA tools, able to explore the patterns,
correlations and trends among the variables. After
feature scaling, the data are then passed to the
CARN Transformer model, the chaotic attractor
component dynamically assigns the weight to
feature inputs, enabling the system to prioritise
the abrupt fluctuations in voltage or current, when
predicting SOC. The recurrent network integrates
the gated memory units the capturing long-range
dependencies in the time-series data. The
Transformer’s multi-head attention mechanism is
adept at modelling temporal dependencies, which
is particularly important in battery systems where

events
influence current behaviour. The Transformer
captures both short- and long-term patterns
effectively, this hybrid approach effectively
enhances the accuracy of SoC estimation in LiB.

past charge/discharge significantly

PROPOSED SYSTEM MODELLING

I. DATA PREPROCESSING

A. Data Collection

In designing SOC estimation model, voltage,
current, temperature, and ambient temperature is
intentionally selected as a key input variable. This
decision reflects the well-established influence of
temperature on the behaviour and performance of
lithium-ion batteries, which are extensively used
in electric vehicles. Temperature directly affects
battery capacity, charge and discharge rates, and
overall battery health. Since electric vehicles
operate across diverse environmental conditions,
it is essential to account for temperature
fluctuations. Incorporating ambient temperature
into the model enhances adaptability and ensures
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reliability across varying climates and usage
scenarios. Moreover, ambient temperature is a
practical choice, as it is easily measurable or
estimable in real-world vehicle systems.
Ultimately, this inclusion enhances the model’s
precision and robustness, supporting more
accurate SOC estimation in diverse operating
environments typical of electric mobility.

B
Fig. 4. SoC estimation model.

From Fig.4, the collected real-world driving
trip data, includes key parameters such as voltage
(V), current (A), battery temperature (°C), and
ambient temperature (°C). Merging all recorded
values into a unified dataset, ensuring the accurate
synchronisation  of  corresponding  sensor
readings.

Data Pre-processing

The pre-processing ensures the development
of accurate and reliable SoC estimation models.
Datasets used for SoC prediction often suffer
from incomplete entries, which arise from a
variety of factors, including human input errors,
sensor malfunctions, limitations in data
availability, or intentional omission of certain
measurements. Additionally, inconsistencies or
outdated entries lead to data removal during
quality checks. Moreover, instances of anomalous
data values that deviate significantly from
expected patterns are also treated as missing, as
they are typically discarded to maintain dataset
integrity. These values are commonly addressed
through data imputation techniques or repair
mechanisms, which substitute missing or invalid
values with contextually appropriate estimates.
Thus, properly managing such incomplete or
corrupted data is essential for improving model
convergence and enhancing the accuracy of SoC
predictions in real-world operating environments.
B. Feature Scaling

Feature scaling is performed on the variables
such as battery voltage, current, ambient and
internal temperatures, transforming their values
into a standardized range of [0-1] while
preserving their original context.  This

emperature

Ambient
Temperature

BATTERY SOC
ESTIMATION

>
>
>
>

Voltage

Current TRAINING MODEL
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normalization process was essential for
optimizing the performance and convergence of
the learning algorithm.

C. Exploratory Data Analysis

Exploratory data analysis serves a critical
foundational role in estimating SoC levels. EDA
primarily involves statistical summarisation,
visualisation  through graphs and plots,
understanding distribution patterns, uncovering
inter-variable relationships, cultivating intuition
about the dataset, and distilling meaningful
insights from raw observations. EDA focuses on
the intrinsic structure of the data itself, without
imposing rigid distributional constraints. It
emphasises data visualisation as a tool for
revealing hidden patterns and anomalies, offering
analysts immediate insights into the underlying
system dynamics. EDA is inherently exploratory,
helps to investigate the data further, and fosters a
more nuanced understanding. This iterative,
insight-driven process is crucial for discovering
models that genuinely fit the behaviour of battery
systems during charge/discharge cycles.

Viewing data through visual representations
such as graphs, charts, histograms, and plots
greatly enhances the ability to identify patterns
and trends at a glance, fig.5. These tools make
complex datasets more approachable and
intuitive, especially for individuals without a
technical background, enabling them to grasp
insights that might otherwise be hidden in raw
numbers. SOC estimation relies heavily on
continuous features like voltage, temperature,
current, and degradation indices. These data are
visualized with:

Bar charts: Illustrate the frequency of
occurrences, such as the number of cycles
performed under each operating mode.

Pie charts: Represent the percentage
breakdown of different charge protocols or
usage classifications.

Histograms: Revealing the distribution of
SOC over charge/discharge cycles or showing
how voltage levels vary across time.

Box plots: Summarize voltage range,
highlight charging extremes, and flag
temperature outliers affecting battery health.
Scatter plots: Uncovering correlations
between features, such as SOC vs. voltage or
temperature vs. capacity fade.

Heat maps: Displaying grid-like
visualizations of sensor measurements across
cycles to expose thermal runaway patterns or
aging hotspots.
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e Line plots: Tracing SOC trajectories over time
or usage cycles, essential for detecting
nonlinearities, drifts, and charge efficiency
loss.
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The relations between battery data are visually
explored through EDA, revealing key patterns
and correlations among voltage, current,
temperature, and ambient temperature, which is
crucial for accurate SOC estimation. For training
and evaluation purposes, the dataset was split
according to the 70/30 ratio, with 70% allocated
for training and 30% for testing, in effective
estimation of SoC levels in LiB for EV systems.
D. Carn-Transformer Net

The CARN approach starts by representing
lithium-ion Battery SoC as a nonlinear dynamic
process through employing chaotic temporal
dynamics in battery data to enable predictive
learning with a recurrent neural architecture. The
chaotic systems are characterized by the
interaction of multiple non-linear processes,
resulting in sensitive dependence on initial
conditions and complex dynamics. To model such
systems, consider the deterministic dynamical
process:

F:M—>M (1)

Evolving on a geometric structure known as an
attractor A located within a manifold M , which is
locally c™ (N-times continuously differentiable).
When this system is observed through time series
data{z,} =R, these observations are interpreted

as being produced by an unknown measurement
functionh. To reconstruct the underlying
dynamics of this hidden system, Phase Space
Reconstruction (PSR) is utilized, a method that

allows us to approximate the original dynamics
via a reconstructed map

K:R" ->R" )
Where the system’s behaviour unfolds on a

topologically equivalent attractor A embedded in
Euclidean space of dimensionm. This
reconstructed attractor forms a differentiable
homomorphism of the original attractor A,
preserving its essential geometric and topological
features. The entire flow of transformation is
modelled where, {z}and {u} represent sampled

sequences originating from two dynamic systems.
The chaotic attractor structure,

A={A| @3)

which resides in the phase space R™. During
the forecasting phase, a local prediction strategy
is employed. This involves estimating future
states using the rule:

i = K" (ui) (4)

Here, the local mapping k@ is either a linear
or a nonlinear neural network function, where in
parameters are shared across nearby states u; or
among states located in the same neighbourhood
of the reconstructed attractor. This approach
assumes that points lying within close proximity
on the manifold tend to exhibit similar evolution
behaviour. From the universal approximation
properties of polynomials, which enable them to
closely mimic a wide range of dynamical
behaviours, polynomial functions are exploited to
model these intricate chaotic structures with high
fidelity. The transformation pipeline is abstracted
as follows:

The system's first-order linear time-invariant
dynamics,

u

x'(t)= Ax(t)+Bu(t) (5)

Convolution of the system response with input
u(t)is indicated as,

x(t)=(K*u)(t) (6)

The system kernel using the exponential of the
product of matrices A and Brepresented as,

K(t)=e*® (7
Chaotic attractor recurrent network-

transformer have shown exceptional proficiency
in modelling time-series data, making them
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highly applicable to state of charge estimation for
LIBs, Fig. 6. In recent developments, these
architectures have been successfully implemented
in research fields such as epilepsy detection and

POSITIONAL 1\

classification. This work adopts an integrated
modelling strategy that combines transformer
encoders with LSTM and GRU networks.
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Fig. 6. CARN-Transformer Net.

To begin with, the input tensors e RS™<F,
which represents spatial, temporal, and frequency

data, is reshaped to emphasize different
dimensions:
e The temporal-frequency dimension s

flattened into 5, e R>™F

e The spatial-temporal dimension is flattened
into 8. eR7CT
These transformed matrices are then fed
separately into the model as dual input channels.
Positional encodings are added to both time and
frequency inputs to retain ordering information.
To thoroughly extract serial dependencies, the
framework employs two specialized encoder
streams, each tailored to capture either time-based
or frequency-based relationships. Each encoder
shares the same structure, composed of:
o A multi-head self-attention mechanism.
o A Feedforward Neural Network (FFN) block.
In the multi-head attention module, each
attention head generates output as defined in
Equation (8), where:

Attention(Q, K,V ) = soft max(QKT JV . (8)

VG
Where @, K, and V represent the query, key,

and value matrices respectively.

This attention process allows the Transformer
to focus on various subspaces of input
representations simultaneously, thereby
enhancing the diversity and granularity of learned
features. As shown in Equation (9), multiple

heads (denoted by m) contribute
to produce outputs:

MultiHead (Q, K,V ) =Concat(h,,....h,) (9)

independently

Here, WOW“and W' are the learnable

projection matrices,
h, = Attention(QW,?, KW/ ,vW." ). These outputs
then pass through a feed-forward network that
processes each input position independently and
in parallel, accelerating the training process. The
Transformer encoder’s ability to manage long-
range dependencies is further enhanced by
introducing recurrent neural networks, namely
Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), after the encoding stage.
At each time stept, given the current observation
o, the recurrent model aims to predict the next

observation0,,;. The models also leverage

historical data denoted by H, <eR™, which

supplements the current input. The general
predictive model is represented as:

cA)t+1' Ht = fa (Ot' Ht) (10)

Where f, is a learned function parameterised
by & . While all models adhere to this overarching
framework, they differ in the structure of f, and

how their parameters are optimised to forecast the
evolution of the observable vector. Three variants
of Recurrent Neural Networks (RNNs) used in
this study: long short-term memory, gated
recurrent unit, and these architectures are
illustrated in Fig. 7.

185



PROBLEMELE ENERGETICII REGIONALE 1 (69) 2026

h,
C—1——> () D >Ch, 3
VL o[z l |
ht—l J ) / > O ht )I(t | L 4
Xt GRU CELL

LSTM CELL

Fig. 7. Structure of LSTM and GRU cell.

.Long Short-Term Memory (LSTM)

The LSTM architecture effectively addresses
the Vanishing Gradient Problem (VGP)
commonly observed in RNNs by introducing

gating mechanisms. Letz, =(h_,,0,). The LSTM

updates the hidden state h, over time using the
following equations:

h =g’ ©tanh(c,) (11)

C =0 OC,+0,0c (12
9f =0 (W,z +b, ),k e{f,i,0} (13)
¢, =tanh(W,z,+b,) (14)

Here, g, , g/, and g’ €R" denote the forget,
input, and output gates, respectively, and c; €
R js the internal cell state propagated through
time. The model's learnable parameters include
weight matrices W, e R****®) and bias vectors
b, eR", fork e {f,i,o}. The operator o signifies
the Hadamard (element-wise) product, and o
represents the sigmoid activation function.

Gated Recurrent Units (GRU)

The GRU is a streamlined variation of the
LSTM architecture that reduces the number of
parameters by combining the input and forget

gates into a single update gate. Letz, =(h_,,0,).
The GRU updates its memory as follows:

h=g’oh+(1-g/)oh, (15
ﬁl =tanh(Wh (gtr Qh—l)+bh) (16)
9 =o(Wz +b,) kefzr} (17)

In the GRU architecture, the vectors g, and
9/ e R™ represent the update and reset gates,
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respectively. The model includes learnable
parameters in the form of weight matrices

W, e R"(**%) and bias vectorsh, e R" , where
k e{z,r,h} corresponds to the update, reset, and
candidate activation components. Functionally,
the update gate g; regulates how much of the

previous hidden state should be retained,
analogous to a combination of the input and forget
gates found in LSTMs. To streamline the model,
GRU enforces a constraint that the outputs of
certain gates sum to one element-wise this helps
reduce the total number of parameters. GRUs
omit the output gate entirely. Instead, they
introduce a reset gate g, which serves to directly
clear portions of the memory before updating it
with new information. Following the GRU and
LSTM layers, the resulting features denoted as
matrices M (from LSTM)and N (from GRU) are
merged using a gated fusion strategy.
Specifically, the outputs M and N are
concatenated into a single feature vector. This
concatenated vector is linearly projected into a
common spaceH. A SoftMax-based gating
mechanism assigns importance scores to each
output. £ is assigned to the LSTM output and 4,

is assigned to the GRU output. Through this
weighted combination, the fused feature 7 is
generated, incorporating both temporal and
frequency characteristics effectively. This fusion
process is formally described using Equations
(18), (19), and (20).

H =W -Concat(M,N)+b,  (18)
th, 11, = Softmax (H ) (19)
r=Concat(M -z, N - 1, ) (20)

Finally, the 7 is passed through a fully
connected layer, which reduces it to a 2-
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final
SOC

the
the

representing
providing

dimensional vector
classification output,
estimation results.

RESULT AND DISCUSSION

This study presents a Python-based
implementation that integrates a chaotic attractor
with a transformer recurrent network framework
for estimating SoC in LiB for EV systems. The
workflow initiates with a data preprocessing
phase focused on dataset processing and balanced
distribution, ensuring robust input for subsequent
analysis and estimation. The EV-Battery:
Charging-Data” dataset is employed in this
research, in which 70% is utilized for training and
the remaining 30% for testing the CARN-
TransNet Architecture in estimating SOC of LiB.

Battery Types

Fig. 8. Battery types.

Fig. 8 presents the distribution of battery types,
highlighting the dominance of Li-ion and
LiFePO4 battery utilization in electric vehicle
applications that play a pivotal role in SoC
estimation in a Hybrid CARN-TransNet
Architecture. It indicates that the percentage of
LiFePO4 batteries is slightly higher at 50.3%
compared to Li-ion batteries at 49.7% of given
battery types, this allocation highlighting the need
for precise SOC estimation techniques for both
battery chemistries, especially Li-ion, since they
form a substantial proportion of EV system
energy storage solutions.

Fig. 11 illustrates the correlation between the
Degradation Rate (%) of Li-ion batteries and their
Charging Duration (min) in electric wvehicle
applications. It exhibits a general trend of higher
degradation rate with increased charging duration,
effectively quantifies charging behaviour impact
on battery health and optimization of charging
policies for minimising degradation and
maximising the life of Li-ion batteries, thereby
making it possible for accurate CARN-TransNet

SoC estimation models to consider degradation
effects.
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3D View of Voltage, Current, and Battery Temperature
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Fig. 9. 3D view of voltage, current and battery
temperature.

Degradation Rate over Charging Duration
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Fig. 10. Degradation rate over charging duration.
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Fig. 11. Distribution of charging modes.

Fig. 12 visualizes the distribution of charging
modes, indicating the frequency distribution of
different charging times for electric vehicle Li-ion
batteries, usable for examining real-world
charging behaviour in a hybrid CARN-TransNet
approach for accurate SOC estimation. The
distribution "short" (< 40 minutes) for 31.9% of
events, "moderate" (< 80 minutes) for 34.0%, and
"long" (> 80 minutes) for the largest proportion at
34.1%, providing the varied demands the battery
face in different charging circumstances.
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Fig. 12. Voltage and current bar chart.
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Fig.12 reveals the oscillating voltage and
current values with respect to time, plotted on the
x-axis by "Sample Index" and on the y-axis by
"Value" (Voltage in V, Current in A). It helps to
easily identifies voltage and current values at each
sample point, indicating the dynamic electrical
behaviour of a Li-ion battery when exposed to
real-world operating conditions in an EV. For
over 1000 sample indices, CARN-TransNet
accurately recognize these complex patterns and
make precise State of Charge SoC estimations in
the presence of natural noise and real-time battery
variability.

EV Model Performance Radar

Degradation Rate{%

10(?00
Efficiency (%)

Charging Cytte
Fig. 13. EV model performance radar.

Fig.13 shows the radar chart of electric vehicle
model key performance measures of the proposed
architecture for optimal performance of the
battery and SOC estimation. The "Degradation
Rate (%)" and "Efficiency (%)", and "Charging
Cycles", axes of radar charts, are influenced by
the CARN-TransNet architecture as key
parameters. It facilitates a brief comparison of the
model's performance revealing the trade-offs and

Model RMSE

188

advantages achieved based on the accurate SOC
estimation provided by the hybrid architecture.
Smoothed Training vs Validation Loss

= Smoothed Train Loss
Smoothed Val Loss

200 300 400 500

Epoch
Fig. 14. Smoothed training Vs validation loss.

o 100

Fig. 14 presents the smoothed training vs
validation loss depicting the trend of convergence
of the hybrid CARN-TransNet structure,
estimating SOC of Li-ion batteries in the EV
systems. After initial drop in training and
validation loss, and then their levelling off at
values of near zero, to successful convergence
indicating to its suitability to accurately estimate
the SOC of Li-ion batteries for electric vehicle

applications.
Actual vs Predicted SOC - CARN-TRANSNET
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Fig. 15 represents the time-varying voltage
and current measurements that distinguishes four
sample points, showing the dynamic electrical
behaviour of a Li-ion battery in use in an EV.
Over the 1000 sample indices indicate the
necessity of a robust architecture such as CARN-
TransNet to efficiently identify such complicated
patterns and make accurate SoC estimates in spite
of the inherent noise and variability in real-world
battery data.

Table 2 SoC estimation model Comparison

MSE MAE R2-Score
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0 CNN 14.9700
1 DNN 9.3200
2 ANN 1.7160
3 RBFN 1.4900
4 Proposed 0.9671
COMPARISON OF R* SCORE
1.0 0.95 0.97 0.96
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£
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CNN DNN ANN RBFN Proposed

Fig.16. Comparison of R?-score.

The comparative performance of five models such
as CNN, DNN, ANN, RBFN, and the proposed
hybrid CARN, Transformer architecture is
assessed through their key regression metrics:
RMSE, MSE, MAE, and R, score. From the
table.2 and the corresponding fig.16, it is evident
that the proposed model outperforms other
models by a significant margin in all metrics.
Proposed model is able to keep to its minimum the
RMSE and MSE with values of 0.9671 and
0.9352, respectively, and also the MAE, which
equals 0.793, therefore indicating the lowest
prediction error and the highest estimation
accuracy. Particularly, the proposed model leads
to an R, score of 0.9986, thus strongly signifying
a very high correlation between the predicted and
the true SoC values.Fig.17 shows actual versus
predicted SoC values with CNN, DNN, ANN, and
RBFN models. ANN (R =0.97) and RBFN (R =
0.96) exhibit closer trends than CNN (R = 0.92)
and DNN (R = 0.95), however, all models are still
outperformed by the CARN-Trans Net model,
which yields an R, score of 0.9986 along with
very low error metrics, thus, it is stated that this
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224.1000 8.030 0.9200
86.8600 6.810 0.9500
2.9400 1.210 0.9700
1.7500 9.210 0.9600
0.9352 0.793 0.9986

model is accurate and also robust in real, time SoC
estimation.

Table 2 Comparison of RMSE.

SoC Estimation Models RMSE
CNN [26] 14.97
DNN [25] 9.32
Bi-LSTM [24] 1.716
ANN [22] 1.49
RBFN [23] 1.32
Proposed 0.9671

Table 2 demonstrates the comparative analysis
of RMSE values for various SoC estimation
models in LiB for EV systems. The Convolutional
Neural Network (CNN) [26] and DNN [25]
exhibited relatively high RMSE values, indicating
lower accuracy followed by Bi-LSTM [24], ANN
[22] and Radial Basis Function Network (RBFN)
[23]. The proposed CARN with Transformer
model achieves lowest RMSE value of 0.9671,
ensuring its superior performance in SoC
prediction.

COMPARISON OF MSE

1.98

1.75

0.9352

Proposed

RBFN RNN-CNN

mSeriesl 1.75 1.98 0.9352

Fig. 17. Comparison of MSE.
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Fig.18. Comparison of Actual and Predicted values.

Fig. 18 displays the performance of MSE of
different techniques used for estimating SoC of
LiB in EV applications. The proposed hybrid
CARN with transformer model demonstrates the
lowest MSE of 0.9352, indicating its enhanced
efficiency in SoC prediction, outperforming
conventional algorithms.

COMPARISON OF MAE
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0
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Fig. 29. Comparison of MAE.
Fig.29 represents the performance of

comparative analysis of MAE for RBFN [23],
CNN [26] approach, and the proposed SoC

estimation model. The proposed CARN with
transformer model has a MAE of 0.793,
outperforms the conventional methods.

COMPARISON OF R2-SCORE
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XGBOOST
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Fig. 20. Comparison of R2-score.

In Fig. 20, a comparative graph of R?- Score of
previous methods and the performance of the
proposed CARN with transformer model are
displayed. The proposed method outperforms
conventional methods in terms of R?- Score of
99.86% respectively.
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CONCLUSION

This research proposes a robust framework
that integrates a hybrid chaotic attractor-based
recurrent neural network with transformer
modules, tailored for SOC estimation in LiB for
enhanced EV systems. The integration of chaotic
attractor mechanisms with recurrent network
transformer architecture significantly improves
the model’s ability to handle complex, nonlinear
datasets by emphasizing critical patterns and
temporal  dependencies.  This  work s
implemented through Python software, the
proposed solution demonstrates superior SoC
estimation performance, achieving reduced
RMSE of 0.9671, MSE of 0.9352, MAE of 0.793
and exhibiting enhanced R2-score of 99.86%. The
model satisfies operational constraints for field
development, thereby optimizing decision-
making processes in EV system diagnostics and
battery optimization scenarios.
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