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Abstract. Main objectives of the study are to design and validate a novel state of charge (SoC) estimation 

framework for Lithium-Ion Batteries (LIBs) in Electric Vehicle (EV) Energy Storage Systems (ESSs), 

integrating the chaotic attractor recurrent network (CARN) with transformer techniques. This hybrid 

approach aims to overcome limitations in conventional battery management systems (BMSs), 

particularly in handling noisy inputs, long-range dependencies, and data imbalance. These objectives 

were achieved by implementing a structured methodology that incorporates data balancing to mitigate 

skewed datasets, exploratory data analysis (EDA) for anomaly detection and pattern recognition, and 

feature scaling for input normalization, thereby ensuring robust and effective model training. The hybrid 

classification model leverages the temporal pattern recognition capability of ARN alongside the strong 

attention mechanism of the Transformer, enabling superior adaptability under diverse operating 

conditions. Implemented in Python, the proposed method was rigorously tested across multiple 

scenarios to confirm its reliability and accuracy. The most important results are the reduced root mean 

square error (RMSE) of 0.9671, mean square error (MSE) of 0.9352, mean absolute error (MAE) of 

0.793, and an enhanced R²-score of 99.86%, which collectively demonstrate significant improvements 

over conventional estimation techniques. The significance of obtained results lies in validating the 

proposed model’s ability to deliver highly accurate, robust, and real-time SoC prediction, thereby 

contributing to safer and more efficient battery management in EVs. This study highlights the potential 

of hybrid deep learning architectures to advance ESS safety, optimize energy utilization, and support 

sustainable electric mobility.
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Abstract. Obiectivele principale ale studiului sunt proiectarea și validarea unui cadru inovator de estimare a stării 

de încărcare (SoC) pentru bateriile litiu-ion (LIB) din sistemele de stocare a energiei (ESS) ale vehiculelor electrice 

(EV), integrând rețeaua recurentă de atractori haotici (CARN) cu tehnici de transformare. Această abordare hibridă 

vizează depășirea limitărilor sistemelor convenționale de gestionare a bateriilor (BMS), în special în ceea ce 

privește gestionarea intrărilor zgomotoase, dependențele pe termen lung și dezechilibrul datelor. Aceste obiective 

au fost atinse prin implementarea unei metodologii structurate care include echilibrarea datelor pentru a atenua 

seturile de date distorsionate, analiza exploratorie a datelor (EDA) pentru detectarea anomaliilor și recunoașterea 

modelelor, precum și scalarea caracteristicilor pentru normalizarea intrărilor, asigurând astfel o instruire robustă 

și eficientă a modelului. Modelul de clasificare hibrid utilizează capacitatea de recunoaștere a modelelor temporale 

a ARN împreună cu mecanismul puternic de atenție al Transformer, permițând o adaptabilitate superioară în 

diverse condiții de funcționare. Implementată în Python, metoda propusă a fost testată riguros în mai multe scenarii 

pentru a confirma fiabilitatea și acuratețea sa. Cele mai importante rezultate sunt reducerea erorii medii pătrate 

(RMSE) la 0.9671, a erorii medii pătrate (MSE) la 0.9352, a erorii medii absolute (MAE) la 0.793 și îmbunătățirea 

scorului R² la 99.86%, care demonstrează în ansamblu îmbunătățiri semnificative față de tehnicile de estimare 

convenționale. Semnificația rezultatelor obținute constă în validarea modelului propus.

Cuvinte-cheie: baterii litiu-ion, sisteme de management al bateriilor, rețea recurentă de atracție haotică (CARN) 

și transformator, prelucrarea datelor, analiză exploratorie a datelor, Python.
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Аннотация. Основными целями исследования являются разработка и валидация новой системы оценки 

уровня заряда (SoC) литий-ионных батарей (LIB) в системах хранения энергии (ESS) электромобилей (EV) 

путем интеграции рекуррентной сети хаотического аттрактора (CARN) с технологиями трансформатора. 

Этот гибридный подход направлен на преодоление ограничений традиционных систем управления 

батареями (BMS), в частности при обработке зашумленных входных данных, долгосрочных зависимостей 

и дисбаланса данных. Эти цели были достигнуты за счет внедрения структурированной методологии, 

которая включает в себя балансировку данных для смягчения искаженных наборов данных, 

эксплораторный анализ данных (EDA) для обнаружения аномалий и распознавания образов, а также 

масштабирование характеристик для нормализации входных данных, что обеспечивает надежное и 

эффективное обучение модели. Гибридная модель классификации использует способность ARN к 

распознаванию временных паттернов наряду с мощным механизмом внимания Transformer, что 

обеспечивает превосходную адаптивность в различных условиях эксплуатации. Реализованный на Python, 

предложенный метод был тщательно протестирован в нескольких сценариях для подтверждения его 

надежности и точности. Наиболее важными результатами являются снижение среднеквадратичной 

ошибки (RMSE) до 0.9671, средней квадратичной ошибки (MSE) до 0.9352, средней абсолютной ошибки 

(MAE) до 0.793 и повышение коэффициента R² до 99.86 %, что в совокупности демонстрирует 

значительные улучшения по сравнению с традиционными методами оценки. Значение полученных 

результатов заключается в подтверждении достоверности предложенной модели.

Ключевые слова: литий-ионные аккумуляторы, системы управления аккумуляторами, хаотическая 

аттракторная рекуррентная сеть (CARN) и трансформатор, обработка данных, разведочный анализ 

данных, Python.

INTRODUCTION

Energy Storage Systems (ESSs) are pivotal 

technologies for the future development of EVs

and smart grid infrastructures. Among these, 

lithium-ion batteries represent the most rapidly 

expanding ESS solution. However, despite their 

growing prevalence, critical issues related to the 

safety and effective management of LIBs remain 

unresolved. As a result, battery management 

systems have emerged as an essential component

in the electrification of battery electric vehicles,

offering a suite of functionalities designed to 

ensure safe and efficient battery operation. In 

recent years, the creation of intelligent and 

advanced state-of-charge estimation methods for 

LIBs has become a highly active field of research. 

Yet, progress is hindered by several technological 

challenges [1]. 

• Firstly, the nonlinear behaviour of LIBs 

stemming from their multi-scale architecture 

(ranging from individual materials to full 

battery packs) and evolving characteristics 

over time (such as ageing) makes accurate 

modelling complex. 

• Secondly, internal battery conditions are 

difficult to monitor and are highly sensitive to 

changes in external environmental conditions. 

The transition from laboratory-scale to 

industrial-scale LIBs further exacerbates this 

issue, as discrepancies between theoretical and 

real-world conditions increase [2]. Lastly, 

inconsistencies among LIB units compromise the 

performance and stability of battery packs, 

especially in BEV applications. Methods 

developed for small-scale batteries often prove 

inadequate when applied to large-scale systems, 

making precise SoC estimation a significant 

challenge. Therefore, the development of 

sophisticated SoC estimation techniques is 

urgently needed to address these limitations. 

Accurate battery state estimation is a core feature 

of modern BMSs in BEVs, enabling stable and 

efficient battery use while laying the foundation 

for improved safety oversight [3].

I. LITHIUM-ION BATTERY:

Lithium-ion batteries offer several key 

advantages, including high energy and power 

densities, extended cycle life, strong adaptability 

to environmental conditions, and elevated cell 

voltage. Materials used in lithium-ion battery 

cells perform optimally within a defined safe 

operating window. This window outlines the 

acceptable temperature and voltage ranges, along 

with the maximum allowable current during both 

charging and discharging processes [4]. There are 

multiple types of lithium-ion chemistries, each 

with its unique strengths. For instance, Lithium 
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Cobalt Oxide (LCO) is known for its high specific 

energy, while Lithium Manganese Oxide (LMO) 

provides excellent specific power. Nickel Cobalt 

Aluminium (NCA) and Nickel Manganese Cobalt 

(NMC) batteries are cost-effective and exhibit 

strong thermal stability. Lithium Iron Phosphate 

(LFP) batteries are characterised by a flat Open-

Circuit Voltage (OCV) curve, but they typically 

have lower capacity and higher self-discharge 

rates. Meanwhile, Lithium Titanate (LTO) 

batteries excel in fast charging and long service 

life, though they have lower specific energy and 

come at a higher cost [5].

II. BATTERY MANAGEMENT SYSTEM:

BMS incorporate multiple functions that 

monitor and control battery performance across 

individual cells, modules, and entire battery 

packs. As batteries age, their energy storage 

capacity diminishes. This degradation is 

represented by the state of health, while the 

Remaining Useful Life (RUL) refers to the 

expected duration or number of charge-discharge 

cycles left before reaching End of Life (EoL). Fig.

1, a modern BMS also deliver precise estimates of 

key parameters such as the SoC, SoH, RUL, 

capacity, and available power. These estimations 

are derived from continuous monitoring of 

current, voltage, and temperature. Among these, 

SoC estimation is particularly vital, yet achieving 

accurate and real-time results is challenging due 

to the battery’s complex and nonlinear 

electrochemical behaviour with the evolving 

characteristics associated with ageing [6]

Fig. 1. Role of Battery Management System.

A battery management system integrates 

hardware and software to regulate battery 

operating conditions with the goal of extending 

battery lifespan, ensuring safety, and providing 

accurate assessments of various battery states for 

energy management purposes [7].

Fig. 2. Battery management in EV.

BMS incorporates various sensor networks to 

monitor and measure critical battery parameters, 

including current, voltage, and temperature, Fig.

2. However, acquiring highly accurate data 

outside of controlled laboratory settings is 

challenging due to equipment costs and spatial 

limitations. Temperature plays a crucial role in 

cell reliability and performance, and thermal 

imbalances lead to degradation. Once a BMS has 

acquired the necessary data, it operates 

autonomously. With advancements in smart 

battery technologies, it is now possible for the 

charger and battery to exchange detailed 

operational data, enhancing system coordination 

and efficiency [8].

State of charge estimation techniques are

broadly categorised into five main types: 
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Coulomb Counting Methods (CCMs), Open-

Circuit Voltage Methods (OCVMs), Impedance 

Spectroscopy-Based Methods (ISBMs), Model-

Based Methods (MBMs), and those utilising

Neural Networks (NNBMs) [9]. The coulomb 

counting method is among the simplest and most 

easily implemented techniques for estimating a 

battery's state of charge, requiring minimal 

computational power. It works by integrating the 

current over time during charging and discharging 

processes. However, its accuracy is compromised 

by external factors such as electrical noise, 

temperature fluctuations, and current 

measurement errors, which introduce uncertainty 

into the estimation [10]. The open-circuit voltage 

method is a highly accurate and simple approach 

for estimating the state of charge, making it easy 

to implement. Nevertheless, its primary limitation 

lies in the extended time required for the battery 

to reach a stable equilibrium state. Due to this 

delay, the OCV method is unsuitable for real-time 

SoC estimation and is therefore better suited for 

applications with low power demands where 

immediate response is not critical [11]. The 

impedance and internal resistance of lithium-ion 

batteries characterise their intrinsic electrical 

behaviour under various current stimuli, provided 

that temperature, SoC and SoH remain constant.

Though measuring Electrical Impedance 

Spectroscopy (EIS) in real-time is challenging 

due to several factors, it often requires sinusoidal 

Alternating Current (AC), the correlation between 

impedance and SoC is not consistent, and the 

associated equipment is costly. Determining 

internal resistance involves applying Direct 

Current (DC) and capturing voltage and current 

over brief time intervals. Yet, internal resistance 

evolves gradually, making it difficult to track 

effectively for accurate SoC estimation. As a 

result, SoC estimation methods based on 

impedance and internal resistance are generally 

unsuitable for electric vehicle applications [12].

The model-based methods depend on accurate 

battery models to estimate the state of charge with 

precision. However, the internal parameters of a 

battery continuously change during charging and 

discharging cycles, making it challenging to 

develop a single model that reliably captures all 

external behaviours of the battery [13]. Various 

types of neural networks and related 

methodologies are widely used for capturing and 

modelling the nonlinear relationships between a 

system’s inputs and outputs [14]. A Deep Neural 

Network (DNN) model estimates the SOC of 

lithium-ion batteries used in electric vehicles. The 

DNN’s architecture, with adequately sized hidden 

layers, enables it to predict SOC for previously 

unseen drive cycles during training. A range of 

DNN configurations, varying in hidden layer 

count and training algorithms, leads to reduced 

prediction error and more accurate SOC 

estimation. Moreover, DNN is limited by

validation, making its reliability and 

generalisation in battery systems not yet fully 

established [15]. The Feed-Forward Neural 

Network (FFNN) is used to estimate SoC 

prediction, the single-layer FFNN effectively 

modelled and predicts SOC across the dataset, 

with the exception of instances where the SOC 

approached the maximum value of 100% [16]. Bi-

LSTM (Bidirectional Long Short-Term Memory) 

enhances SOC estimation accuracy by using two 

LSTM layers that process input sequences both 

forward and backwards, capturing comprehensive 

temporal dependencies. Though, Bi-LSTM offers 

high SOC estimation accuracy at room 

temperature, its performance significantly 

degrades under extremely low-temperature 

conditions [17]. To overcome these limitations,

this research proposes a novel CARN integrated 

with transformer architecture, the RNN 

components enhance the model’s ability to retain 

and process sequential information over time, 

capturing short-term dependencies in SoC 

dynamics. The chaotic behaviour represents

nonlinear patterns and the Transformer’s attention 

mechanism for long-range sequence learning, 

ensures improved robustness and accuracy across 

varying operational and environmental 

conditions.

The contributions of proposed SoC estimation 

model are listed below:

• The collected raw sensor data is cleaned, 

normalised, and balanced to ensure robust 

model performance across various operating 

conditions.

• Exploratory data analysis performed in-depth 

analyse to understand patterns, detect 

anomalies, and assess feature relevance, 

guiding subsequent modelling steps.

• Feature engineering derives meaningful input

variables from raw data to enhance the 

predictive capability of the model, including 

temporal dynamics and interaction terms.

• Data Splitting segregates the dataset into 

training and testing subsets to validate the 

model’s generalisation ability, using 

structured trip-based partitioning.
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• CARN-Transformer is integrated, which 

combines a convolutional attention residual 

network and transformer mechanisms for 

accurate SOC estimation.

Table 1

Related works of SoC estimation in LiB for EV systems.

Ref.No Author & Title Methodology used Operations Limitations

[18]

Eymen İPEK et 

al “A novel 

method for SOC 

estimation of Li-

ion batteries 

using a hybrid 

machine 

learning 

technique”

XGBoost (Extreme 

Gradient Boosting) 

is used to estimate 

SOC under 

dynamic operating 

conditions

XGBoost estimates 

SOC by training on 

labelled battery data 

using the 

`XGBRegressor`, 

learning patterns 

through supervised 

learning, and then 

validating its prediction 

accuracy with similar 

test data to model SOC 

as a regression problem.

Its effectiveness in 

SOC estimation is 

limited by the 

availability and 

quality of training 

data, requiring well-

characterised

operational profiles to 

perform reliably even 

with minimal data.

[19]

Obuli Pranav D. 

et al “Enhanced 

SOC estimation 

of lithium-ion 

batteries with 

RealTime data 

using machine 

learning 

algorithms”

Gaussian Process 

Regression (GPR) 

is designed for 

modelling the 

complex 

relationship 

between real-time 

driving data and 

battery SOC.

GPR estimates SOC by 

using a kernel function 

to model the correlation 

between data points 

while optimising noise 

and complexity trade-

offs to ensure accurate 

and flexible predictions.

However, it is 

computationally 

intensive and less 

scalable for large 

datasets.

[20]

J. 

Harinarayanan 

et al “SOC 

estimation for a 

lithium-ion 

pouch cell using 

machine 

learning under 

different load 

profiles”

Machine learning 

technology, based 

random forest 

method, is 

presented for 

estimating SoC.

RF estimates SoC by 

using an ensemble of 

decision trees to capture 

complex patterns in 

battery data, delivering 

more accurate, reliable 

predictions under real-

world driving 

conditions.

Yet, its performance 

declines when faced 

with unfamiliar load 

profiles or insufficient 

training models.

[21]

Sadiqa Jafari et 

al “Efficient 

state of charge 

estimation in 

electric vehicles 

batteries based 

on the extra tree 

regressor: A 

data-driven 

approach”

Extra Tree 

Regressor (ETR) is 

presented for

effectively 

predicting the SoC 

of EVs.

It employs ensemble 

learning by aggregating 

multiple decision trees 

to reduce overfitting and 

improve robustness.

It is highly dependent 

on data quality, and its 

predictive accuracy 

and generalizability 

are influenced.

[22]

Muhammad 

Adib Kamali et 

al “ANN-based 

State of Charge 

Estimation of 

Li-ion Batteries 

for Embedded 

Applications

This study utilises

data-driven SOC 

estimation based on 

an artificial neural 

network (ANN).

ANNs, known for their 

strong adaptability to 

nonlinear systems, are 

increasingly used to 

model the relationship 

between measured 

battery data and SOC,

demonstrating reliable 

It requires manual 

parameter tuning.
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performance across 

different battery ageing

levels.

PROPOSED SYSTEM DESCRIPTION

The accuracy of the SoC estimation is crucial 

for ensuring the reliable and efficient operation of 

LiB in EV systems. The proposed work 

introduces a hybrid architecture leveraging the 

chaotic attractor recurrent network with a 

transformer, which is depicted in Fig. 3

Fig. 3. Proposed SoC estimation of LiB model.

The real-time battery parameters such as 

voltage, current, temperature and ambient 

temperature data are collected from the battery 

management system. The raw data collected is

pre-processed by handling missing values, 

enhancing the quality of the data. The pre-

processed data is rescaled to a specific range, to 

ensure faster convergence throughout the system. 

The feature-scaled data are visually analysed 

through EDA tools, able to explore the patterns, 

correlations and trends among the variables. After 

feature scaling, the data are then passed to the 

CARN Transformer model, the chaotic attractor 

component dynamically assigns the weight to 

feature inputs, enabling the system to prioritise

the abrupt fluctuations in voltage or current, when 

predicting SOC. The recurrent network integrates 

the gated memory units the capturing long-range 

dependencies in the time-series data. The 

Transformer’s multi-head attention mechanism is 

adept at modelling temporal dependencies, which 

is particularly important in battery systems where 

past charge/discharge events significantly 

influence current behaviour. The Transformer 

captures both short- and long-term patterns 

effectively, this hybrid approach effectively 

enhances the accuracy of SoC estimation in LiB.

PROPOSED SYSTEM MODELLING

I. DATA PREPROCESSING

A. Data Collection

In designing SOC estimation model, voltage, 

current, temperature, and ambient temperature is 

intentionally selected as a key input variable. This 

decision reflects the well-established influence of 

temperature on the behaviour and performance of 

lithium-ion batteries, which are extensively used 

in electric vehicles. Temperature directly affects 

battery capacity, charge and discharge rates, and 

overall battery health. Since electric vehicles 

operate across diverse environmental conditions, 

it is essential to account for temperature 

fluctuations. Incorporating ambient temperature 

into the model enhances adaptability and ensures 
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reliability across varying climates and usage 

scenarios. Moreover, ambient temperature is a 

practical choice, as it is easily measurable or 

estimable in real-world vehicle systems. 

Ultimately, this inclusion enhances the model’s 

precision and robustness, supporting more 

accurate SOC estimation in diverse operating 

environments typical of electric mobility.

Fig. 4. SoC estimation model.

From Fig.4, the collected real-world driving 

trip data, includes key parameters such as voltage 

(V), current (A), battery temperature (ºC), and

ambient temperature (ºC). Merging all recorded 

values into a unified dataset, ensuring the accurate 

synchronisation of corresponding sensor 

readings.

Data Pre-processing 

The pre-processing ensures the development 

of accurate and reliable SoC estimation models. 

Datasets used for SoC prediction often suffer 

from incomplete entries, which arise from a 

variety of factors, including human input errors, 

sensor malfunctions, limitations in data 

availability, or intentional omission of certain 

measurements. Additionally, inconsistencies or 

outdated entries lead to data removal during 

quality checks. Moreover, instances of anomalous 

data values that deviate significantly from 

expected patterns are also treated as missing, as 

they are typically discarded to maintain dataset 

integrity. These values are commonly addressed 

through data imputation techniques or repair 

mechanisms, which substitute missing or invalid 

values with contextually appropriate estimates. 

Thus, properly managing such incomplete or 

corrupted data is essential for improving model 

convergence and enhancing the accuracy of SoC 

predictions in real-world operating environments.

B. Feature Scaling

Feature scaling is performed on the variables 

such as battery voltage, current, ambient and 

internal temperatures, transforming their values 

into a standardized range of [0–1] while 

preserving their original context. This 

normalization process was essential for 

optimizing the performance and convergence of 

the learning algorithm. 

C. Exploratory Data Analysis

Exploratory data analysis serves a critical 

foundational role in estimating SoC levels. EDA 

primarily involves statistical summarisation, 

visualisation through graphs and plots, 

understanding distribution patterns, uncovering 

inter-variable relationships, cultivating intuition 

about the dataset, and distilling meaningful 

insights from raw observations. EDA focuses on 

the intrinsic structure of the data itself, without 

imposing rigid distributional constraints. It 

emphasises data visualisation as a tool for 

revealing hidden patterns and anomalies, offering 

analysts immediate insights into the underlying 

system dynamics. EDA is inherently exploratory, 

helps to investigate the data further, and fosters a 

more nuanced understanding. This iterative, 

insight-driven process is crucial for discovering 

models that genuinely fit the behaviour of battery 

systems during charge/discharge cycles.

Viewing data through visual representations 

such as graphs, charts, histograms, and plots 

greatly enhances the ability to identify patterns 

and trends at a glance, fig.5. These tools make 

complex datasets more approachable and 

intuitive, especially for individuals without a 

technical background, enabling them to grasp 

insights that might otherwise be hidden in raw 

numbers. SOC estimation relies heavily on 

continuous features like voltage, temperature, 

current, and degradation indices. These data are 

visualized with:

• Bar charts: Illustrate the frequency of 

occurrences, such as the number of cycles 

performed under each operating mode.

• Pie charts: Represent the percentage 

breakdown of different charge protocols or 

usage classifications.

• Histograms: Revealing the distribution of 

SOC over charge/discharge cycles or showing

how voltage levels vary across time.

• Box plots: Summarize voltage range, 

highlight charging extremes, and flag 

temperature outliers affecting battery health.

• Scatter plots: Uncovering correlations 

between features, such as SOC vs. voltage or 

temperature vs. capacity fade.

• Heat maps: Displaying grid-like 

visualizations of sensor measurements across 

cycles to expose thermal runaway patterns or 

aging hotspots.
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• Line plots: Tracing SOC trajectories over time 

or usage cycles, essential for detecting 

nonlinearities, drifts, and charge efficiency 

loss.

Fig. 5. Techniques in EDA.

The relations between battery data are visually 

explored through EDA, revealing key patterns 

and correlations among voltage, current, 

temperature, and ambient temperature, which is 

crucial for accurate SOC estimation. For training 

and evaluation purposes, the dataset was split 

according to the 70/30 ratio, with 70% allocated 

for training and 30% for testing, in effective 

estimation of SoC levels in LiB for EV systems.

D. Carn-Transformer Net

The CARN approach starts by representing 

lithium-ion Battery SoC as a nonlinear dynamic 

process through employing chaotic temporal 

dynamics in battery data to enable predictive 

learning with a recurrent neural architecture. The 

chaotic systems are characterized by the 

interaction of multiple non-linear processes, 

resulting in sensitive dependence on initial 

conditions and complex dynamics. To model such 

systems, consider the deterministic dynamical 

process: 

:F M M→        (1)

Evolving on a geometric structure known as an 

attractor A located within a manifold M , which is 

locally NC (N-times continuously differentiable). 

When this system is observed through time series 

data    iz R , these observations are interpreted 

as being produced by an unknown measurement 

function  h . To reconstruct the underlying 

dynamics of this hidden system, Phase Space 

Reconstruction (PSR) is utilized, a method that 

allows us to approximate the original dynamics 

via a reconstructed map 

: m mK R R→                         (2)

Where the system’s behaviour unfolds on a 

topologically equivalent attractor  A embedded in 

Euclidean space of dimension m . This 

reconstructed attractor forms a differentiable 

homomorphism of the original attractor A , 

preserving its essential geometric and topological 

features. The entire flow of transformation is 

modelled where,  iz and  iu represent sampled 

sequences originating from two dynamic systems. 

The chaotic attractor structure,

 iA A=                                  (3)

which resides in the phase space 𝑅𝑚. During 

the forecasting phase, a local prediction strategy 

is employed. This involves estimating future 

states using the rule:

( ) ( )1

i

i iu K u+ =                            (4)

Here, the local mapping ( )i
K is either a linear 

or a nonlinear neural network function, where in 

parameters are shared across nearby states 𝑢𝑖 or 

among states located in the same neighbourhood 

of the reconstructed attractor. This approach 

assumes that points lying within close proximity 

on the manifold tend to exhibit similar evolution 

behaviour. From the universal approximation 

properties of polynomials, which enable them to 

closely mimic a wide range of dynamical 

behaviours, polynomial functions are exploited to 

model these intricate chaotic structures with high 

fidelity. The transformation pipeline is abstracted 

as follows:

The system's first-order linear time-invariant 

dynamics, 

( ) ( ) ( )x t Ax t Bu t= +      (5)

Convolution of the system response with input 

( )u t is indicated as, 

( ) ( )( )*x t K u t=            (6)

The system kernel using the exponential of the 

product of matrices 𝐴 and 𝐵represented as, 

( ) tABK t e=      (7)

Chaotic attractor recurrent network-

transformer have shown exceptional proficiency 

in modelling time-series data, making them 
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highly applicable to state of charge estimation for 

LIBs, Fig. 6. In recent developments, these 

architectures have been successfully implemented 

in research fields such as epilepsy detection and 

classification. This work adopts an integrated 

modelling strategy that combines transformer 

encoders with LSTM and GRU networks.

Fig. 6. CARN-Transformer Net.

To begin with, the input tensor S T FR   , 

which represents spatial, temporal, and frequency 

data, is reshaped to emphasize different 

dimensions:

• The temporal-frequency dimension is 

flattened into   S T F

S R  

• The spatial-temporal dimension is flattened 

into 
( )

 
F S T

F R
 



These transformed matrices are then fed 

separately into the model as dual input channels. 

Positional encodings are added to both time and 

frequency inputs to retain ordering information. 

To thoroughly extract serial dependencies, the 

framework employs two specialized encoder 

streams, each tailored to capture either time-based 

or frequency-based relationships. Each encoder 

shares the same structure, composed of:

• A multi-head self-attention mechanism.

• A Feedforward Neural Network (FFN) block.

In the multi-head attention module, each 

attention head generates output as defined in 

Equation (8), where:

( ), ,  
T

k

QK
Attention Q K V soft max V

d

 
=  

 
 

.    (8)

Where  Q , K , and V represent the query, key, 

and value matrices respectively.

This attention process allows the Transformer 

to focus on various subspaces of input 

representations simultaneously, thereby 

enhancing the diversity and granularity of learned 

features. As shown in Equation (9), multiple 

heads (denoted by m ) contribute independently 

to produce outputs:

( ) ( )1, , , , mMultiHead Q K V Concat h h=     (9)

Here, ,Q K

i iW W and 
V

iW are the learnable 

projection matrices,

( ), ,Q K V

i i i ih Attention QW KW VW= . These outputs 

then pass through a feed-forward network that 

processes each input position independently and 

in parallel, accelerating the training process. The 

Transformer encoder’s ability to manage long-

range dependencies is further enhanced by 

introducing recurrent neural networks, namely 

Long Short-Term Memory (LSTM), Gated 

Recurrent Unit (GRU), after the encoding stage.

At each time step t , given the current observation 

𝑜𝑡 the recurrent model aims to predict the next 

observation 1
ˆ

to + . The models also leverage 

historical data denoted by   n d

tH R  , which 

supplements the current input. The general 

predictive model is represented as:

( )1
ˆ , ,t t t to H f o H+ =     (10)

Where f is a learned function parameterised

by . While all models adhere to this overarching 

framework, they differ in the structure of f and 

how their parameters are optimised to forecast the 

evolution of the observable vector. Three variants 

of Recurrent Neural Networks (RNNs) used in 

this study: long short-term memory, gated 

recurrent unit, and these architectures are 

illustrated in Fig. 7.
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Fig. 7. Structure of LSTM and GRU cell.

.Long Short-Term Memory (LSTM)

The LSTM architecture effectively addresses

the Vanishing Gradient Problem (VGP) 

commonly observed in RNNs by introducing 

gating mechanisms. Let ( )1,t t tz h o−= . The LSTM 

updates the hidden state ℎ𝑡 over time using the 

following equations:

( )0

t t th g tanh c=   (11)

1

f i

t t t t tc g c g c−= +       (12)

( )  ,  , ,k

t k t kg W z b k f i o= +           (13)

( )t c t cc tanh W z b= +     (14)

Here, 
f

tg , 
i

tg , and 
0 hd

tg R denote the forget, 

input, and output gates, respectively, and 𝑐𝑡 ∈
𝑅𝑑ℎ is the internal cell state propagated through 

time. The model's learnable parameters include 

weight matrices 
( )0h hd d d

kW R
 +

 and bias vectors

  hd

kb R , for  , ,k f i o . The operator signifies 

the Hadamard (element-wise) product, and 𝜎
represents the sigmoid activation function.

Gated Recurrent Units (GRU)

The GRU is a streamlined variation of the 

LSTM architecture that reduces the number of 

parameters by combining the input and forget 

gates into a single update gate. Let ( )1,t t tz h o−= . 

The GRU updates its memory as follows:

( )0

11 z

t t t t th g h g h −= + −       (15)

( )( )1

r

t h t t hh tanh W g h b−= +         (16)

( )      ,k

t k t kg W z b k z r= +       (17)

In the GRU architecture, the vectors 
z

tg and 

hdr

tg R represent the update and reset gates, 

respectively. The model includes learnable 

parameters in the form of weight matrices 
( )0h hd d d

kW R
 +

 and bias vectors hd

kb R , where 

 , ,k z r h corresponds to the update, reset, and 

candidate activation components. Functionally, 

the update gate 
z

tg regulates how much of the 

previous hidden state should be retained, 

analogous to a combination of the input and forget 

gates found in LSTMs. To streamline the model, 

GRU enforces a constraint that the outputs of 

certain gates sum to one element-wise this helps 

reduce the total number of parameters. GRUs 

omit the output gate entirely. Instead, they 

introduce a reset gate 
r

tg which serves to directly 

clear portions of the memory before updating it 

with new information. Following the GRU and 

LSTM layers, the resulting features denoted as 

matrices M  (from LSTM) and N (from GRU) are 

merged using a gated fusion strategy. 

Specifically, the outputs M and N are 

concatenated into a single feature vector. This 

concatenated vector is linearly projected into a 

common space H . A SoftMax-based gating 

mechanism assigns importance scores to each 

output. 1  is assigned to the LSTM output and 2

is assigned to the GRU output. Through this 

weighted combination, the fused feature  is 

generated, incorporating both temporal and 

frequency characteristics effectively. This fusion 

process is formally described using Equations 

(18), (19), and (20).

( ), ,H W Concat M N b=  +         (18)

( )1 2  , Softmax H  =           (19)

( )1 2,Concat M N  =          (20)

Finally, the   is passed through a fully 

connected layer, which reduces it to a 2-
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dimensional vector representing the final 

classification output, providing the SOC 

estimation results.

RESULT AND DISCUSSION

This study presents a Python-based 

implementation that integrates a chaotic attractor 

with a transformer recurrent network framework 

for estimating SoC in LiB for EV systems. The 

workflow initiates with a data preprocessing 

phase focused on dataset processing and balanced 

distribution, ensuring robust input for subsequent 

analysis and estimation. The EV-Battery: 

Charging-Data” dataset is employed in this 

research, in which 70% is utilized for training and 

the remaining 30% for testing the CARN-

TransNet Architecture in estimating SOC of LiB.

Fig. 8. Battery types.

Fig. 8 presents the distribution of battery types, 

highlighting the dominance of Li-ion and 

LiFePO4 battery utilization in electric vehicle 

applications that play a pivotal role in SoC 

estimation in a Hybrid CARN-TransNet 

Architecture. It indicates that the percentage of 

LiFePO4 batteries is slightly higher at 50.3% 

compared to Li-ion batteries at 49.7% of given 

battery types, this allocation highlighting the need 

for precise SOC estimation techniques for both 

battery chemistries, especially Li-ion, since they 

form a substantial proportion of EV system 

energy storage solutions. 

Fig. 11 illustrates the correlation between the 

Degradation Rate (%) of Li-ion batteries and their 

Charging Duration (min) in electric vehicle 

applications. It exhibits a general trend of higher 

degradation rate with increased charging duration, 

effectively quantifies charging behaviour impact 

on battery health and optimization of charging 

policies for minimising degradation and 

maximising the life of Li-ion batteries, thereby 

making it possible for accurate CARN-TransNet 

SoC estimation models to consider degradation 

effects.

Fig. 9. 3D view of voltage, current and battery 

temperature.

     

Fig. 10. Degradation rate over charging duration.

Fig. 11. Distribution of charging modes.

Fig. 12 visualizes the distribution of charging 

modes, indicating the frequency distribution of 

different charging times for electric vehicle Li-ion 

batteries, usable for examining real-world 

charging behaviour in a hybrid CARN-TransNet 

approach for accurate SOC estimation. The 

distribution "short" (≤ 40 minutes) for 31.9% of 

events, "moderate" (≤ 80 minutes) for 34.0%, and 

"long" (> 80 minutes) for the largest proportion at 

34.1%, providing the varied demands the battery 

face in different charging circumstances. 
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Fig. 12. Voltage and current bar chart.

Fig.12 reveals the oscillating voltage and 

current values with respect to time, plotted on the 

x-axis by "Sample Index" and on the y-axis by 

"Value" (Voltage in V, Current in A). It helps to

easily identifies voltage and current values at each 

sample point, indicating the dynamic electrical 

behaviour of a Li-ion battery when exposed to 

real-world operating conditions in an EV. For

over 1000 sample indices, CARN-TransNet 

accurately recognize these complex patterns and 

make precise State of Charge SoC estimations in 

the presence of natural noise and real-time battery 

variability.

Fig. 13. EV model performance radar.

Fig.13 shows the radar chart of electric vehicle 

model key performance measures of the proposed 

architecture for optimal performance of the 

battery and SOC estimation. The "Degradation 

Rate (%)" and "Efficiency (%)", and "Charging 

Cycles", axes of radar charts, are influenced by 

the CARN-TransNet architecture as key 

parameters. It facilitates a brief comparison of the 

model's performance revealing the trade-offs and 

advantages achieved based on the accurate SOC 

estimation provided by the hybrid architecture.

Fig. 14. Smoothed training Vs validation loss.

Fig. 14 presents the smoothed training vs 

validation loss depicting the trend of convergence 

of the hybrid CARN-TransNet structure, 

estimating SOC of Li-ion batteries in the EV 

systems. After initial drop in training and 

validation loss, and then their levelling off at 

values of near zero, to successful convergence 

indicating to its suitability to accurately estimate 

the SOC of Li-ion batteries for electric vehicle 

applications.

Fig. 15. Scatter Plot of Actual Vs Predicted SoC 

(%). 

Fig. 15 represents the time-varying voltage 

and current measurements that distinguishes four 

sample points, showing the dynamic electrical 

behaviour of a Li-ion battery in use in an EV. 

Over the 1000 sample indices indicate the 

necessity of a robust architecture such as CARN-

TransNet to efficiently identify such complicated 

patterns and make accurate SoC estimates in spite 

of the inherent noise and variability in real-world 

battery data.

Table 2 SoC estimation model Comparison

Model RMSE MSE MAE R2-Score
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0 CNN 14.9700 224.1000 8.030 0.9200

1 DNN 9.3200 86.8600 6.810 0.9500

2 ANN 1.7160 2.9400 1.210 0.9700

3 RBFN 1.4900 1.7500 9.210 0.9600

4 Proposed 0.9671 0.9352 0.793 0.9986

Fig.16. Comparison of R2-score.

The comparative performance of five models such 

as CNN, DNN, ANN, RBFN, and the proposed

hybrid CARN, Transformer architecture is 

assessed through their key regression metrics: 

RMSE, MSE, MAE, and R, score. From the 

table.2 and the corresponding fig.16, it is evident 

that the proposed model outperforms other 

models by a significant margin in all metrics. 

Proposed model is able to keep to its minimum the 

RMSE and MSE with values of 0.9671 and 

0.9352, respectively, and also the MAE, which 

equals 0.793, therefore indicating the lowest 

prediction error and the highest estimation 

accuracy. Particularly, the proposed model leads 

to an R, score of 0.9986, thus strongly signifying

a very high correlation between the predicted and 

the true SoC values.Fig.17 shows actual versus 

predicted SoC values with CNN, DNN, ANN, and 

RBFN models. ANN (R = 0.97) and RBFN (R = 

0.96) exhibit closer trends than CNN (R = 0.92) 

and DNN (R = 0.95), however, all models are still 

outperformed by the CARN-Trans Net model, 

which yields an R, score of 0.9986 along with 

very low error metrics, thus, it is stated that this 

model is accurate and also robust in real, time SoC 

estimation.

Table 2 Comparison of RMSE.

SoC Estimation Models RMSE

CNN [26] 14.97

DNN [25] 9.32

Bi-LSTM [24] 1.716

ANN [22] 1.49

RBFN [23] 1.32

Proposed 0.9671

Table 2 demonstrates the comparative analysis 

of RMSE values for various SoC estimation 

models in LiB for EV systems. The Convolutional 

Neural Network (CNN) [26] and DNN [25] 

exhibited relatively high RMSE values, indicating 

lower accuracy followed by Bi-LSTM [24], ANN 

[22] and Radial Basis Function Network (RBFN) 

[23]. The proposed CARN with Transformer 

model achieves lowest RMSE value of 0.9671, 

ensuring its superior performance in SoC 

prediction.

Fig. 17. Comparison of MSE. 



PROBLEMELE ENERGETICII REGIONALE 1 (69) 2026

190

Fig.18. Comparison of Actual and Predicted values.

Fig. 18 displays the performance of MSE of 

different techniques used for estimating SoC of 

LiB in EV applications. The proposed hybrid 

CARN with transformer model demonstrates the 

lowest MSE of 0.9352, indicating its enhanced 

efficiency in SoC prediction, outperforming 

conventional algorithms. 

Fig. 29. Comparison of MAE.

Fig.29 represents the performance of 

comparative analysis of MAE for RBFN [23], 

CNN [26] approach, and the proposed SoC 

estimation model. The proposed CARN with 

transformer model has a MAE of 0.793, 

outperforms the conventional methods.

  

Fig. 20. Comparison of R2-score.

In Fig. 20, a comparative graph of R2- Score of 

previous methods and the performance of the 

proposed CARN with transformer model are 

displayed. The proposed method outperforms 

conventional methods in terms of R2- Score of 

99.86% respectively. 
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CONCLUSION

This research proposes a robust framework 

that integrates a hybrid chaotic attractor-based 

recurrent neural network with transformer 

modules, tailored for SOC estimation in LiB for 

enhanced EV systems. The integration of chaotic 

attractor mechanisms with recurrent network 

transformer architecture significantly improves 

the model’s ability to handle complex, nonlinear 

datasets by emphasizing critical patterns and 

temporal dependencies. This work is 

implemented through Python software, the 

proposed solution demonstrates superior SoC 

estimation performance, achieving reduced 

RMSE of 0.9671, MSE of 0.9352, MAE of 0.793 

and exhibiting enhanced R2-score of 99.86%. The 

model satisfies operational constraints for field 

development, thereby optimizing decision-

making processes in EV system diagnostics and 

battery optimization scenarios.
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