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Abstract. The aim of the work is to study the dynamic behavior of induction motors and estimate key
electromechanical parameters using the SINDY ¢ method in conditions where only the results of no-load
and short-circuit tests and a dataset with reference data of various three-phase induction motors of the
AIR series are available. To achieve this goal, general physics methods, three-dimensional modeling,
processing and visualization of results in the Wolfram Mathematica program were used. The working
hypothesis of the research is to investigate the possibilities of using SINDYc to estimate the dynamics
of key electromechanical parameters of three-phase induction motors, subject to limited input data and
the availability of reference data of various three-phase induction motors of the AIR series. The most
important result is the combination of parameters obtained from experiments of no-load and short-circuit
of a three-phase asynchronous motor with a dataset of characteristics of various motors of the
corresponding series, and unknown quantities are found using the developed mathematical model and
the use of calculation relations given in this work. The significance of the research results obtained in
the work lies in the fact that based on the developed method, it is possible to analyze the dynamic
behavior of asynchronous motors and evaluate the dynamics of key electromechanical parameters of an
electric motor using the SINDY ¢ method in conditions when only the results of no-load and short-circuit
tests are available. The results of the analysis of the sparsity of the SINDYc model showed that in the
studied range of threshold values, the accuracy on the test sample practically does not change, while the
number of active terms in the equations changes moderately.
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Estimarea parametrilor unui motor cu inductie trifazat pe baza datelor experimentale si a rezultatelor
modelarii bazate pe SINDYc
Spodoba M.O., Spodoba 0.0., Kovaliciuk S.I.
Universitatea Nationala a resurselor biologice li utilizarea naturii a Ucrainei, Kyiv, Ucraina
Rezumat. Scopul lucririi este de a studia comportamentul dinamic al motoarelor asincrone si evaluarea
parametrilor electromecanici cheie utilizind metoda SINDY¢ in conditii in care sunt disponibile doar rezultatele
testelor la mers in gol si la scurtcircuit si un set de date cu valori de referinta pentru diferite motoare asincrone
trifazate din seria AIR. Pentru atingerea obiectivelor, au fost utilizate metode generale a fizicii, modelare
tridimensionala, procesare si vizualizare a rezultatelor in programul Wolfram Mathematica. Ipoteza de lucru a

datelor de referinta ale diferitelor motoare asincrone trifazate din seria AIR. Cel mai important rezultat consta in
combinarea parametrilor obtinuti din experimentele de mers in gol si in scurtcircuit ale unui motor asincron trifazat
cu un set de date cu caracteristicile diferitelor motoare din seria corespunzatoare, iar marimile necunoscute sunt
gasite folosind modelul matematic elaborat si utilizarea relatiilor de calcul prezentate in aceastd lucrare.
Semnificatia rezultatelor cercetarii obtinute in lucrare constd in faptul ca, pe baza metodei elaborate, este posibila
analiza comportamentului dinamic al motoarelor asincrone si evaluarea dinamicii parametrilor electromecanici
cheie ai unui motor electric utilizind metoda SINDY¢ in conditii in care sunt disponibile doar rezultatele testelor
la mers in gol si la scurtcircuit.

Cuvinte-cheie: metoda SINDY¢, motor electric asincron, cuplu electromagnetic, rotor, modelare.
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OuneHka napaMeTpoB Tpex(a3HOro ACHHXPOHHOT'0 ABMIaTeJIsl 32 IKCHePUMEHTAIbLHBIMH JAHHBIMHU U
pacdeToM mMoaenn Ha ocHoBe SINDYc
Cnogoda M.A., Cnogoda A.A., Kopaabuyk C.H.

HanmoHnanbHbIH YHUBEPCUTET OMOPECYPCOB U IIPUPOAOIIOIL30BaHus Y KpauHsl, Kues, Ykpanna
Annomayus. 1enpio paGoTHI SIBISIETCS UCCIIEIOBAHIE AUHAMUYESCKOTO TOBEACHHS ACHHXPOHHBIX IBUTATENICH 1
OIICHKA KITFOYEBHIX JICKTPOMEXaHUIECKHX IapaMeTpoB ¢ Hcrons3oBanreM Metona SINDYc B ycnmoBumsx, koraa
€CTb TOJBKO PE3YJIbTATHI HCTIBITAHUH X0JIOCTOT0 X013, KOPOTKOTO 3aMBIKAHHS U JATACET C STAJIOHHBIMU JAHHBIMH
pa3nuYHbIX Tpex(a3HBIX ACHHXPOHHBIX aBurareneit cepum AWP. [Ing moCTmXeHHS NOCTaBICHHBIX Ielel
HCIIOJIB30BAIHCH 00MIHMe METOIBI (PH3HKH, TPEXMEPHOE MOIEIMpOBaHIe, 00pad0TKa 1 BI3YyaIH3alus pe3yIbTaToB
B mporpamMme Wolfram Mathematica. PaGouas rumoresa HCCIIeZOBaHMA COCTOWT B TOM, YTOOBI HCCIIEIOBATH
BO3MOXHOCTH npuMeHeHuss SINDYc ans oLleHKM AMHAMHUKU KJIIOUEBBIX AJIEKTPOMEXAaHMYECKHX MapaMeTpoB
Tpex(]a3HbIX aCHHXPOHHBIX JBUraTeleii MpU OrpaHUYEHUH MCXOAHBIX JaHHBIX M HAIMYWH STAIOHHBIX JaHHBIX
pa3NMyHBIX Tpex(a3HbIX aCUHXPOHHBIX aBurarteneil cepunm AMP. HanbGonee BakKHBIM pe3ysIbTaTOM SIBISIETCS
COYeTaHue MapaMeTpOB MOJYUYEHHBIX U3 IKCEPUMEHTOB XOJIOCTOTO X0/1a U KOPOTKOT'O 3aMBIKaHHS TpeX(a3HOro
ACHHXPOHHOTI'O JIBUTATeNsd C JaTaceTOM XapaKTepUCTUK Pa3IMYHBIX JBUraTesiell COOTBETCTBYIOIIEH cepuu, a
HCU3BCCTHBLIC BCIIMYHMHBI HAXOAATCA C IIOMOIIBIO pa3pa60TaHH0171 MaTeMaTHYECKOMU MOJCIN U HCIIOJIB30BaHUA
pacdeTHBIX COOTHOIICHHH, MPUBEICHHBIX B AaHHOH pabore. 3HAYMMOCTh MOIYyYCHHBIX B PaboTe pe3ysIbTaToB
HCCIIEZIOBaHNI COCTOHT B TOM, YTO Ha OCHOBE Pa3pabOTaHHOTO METO/ja MOKHO IIPOBOIUTH aHAIN3 JUHAMHIECKOTO
MOBE/ICHNUS ACHHXPOHHBIX JABHTaTelied M NPOBEACHHE OLECHKM IUHAMHUKH KITIOYEBBIX 3JIEKTPOMEXaHWIECKUX
napaMeTpoB 3JeKTpuieckoro nsurarens MeronoM SINDYc B ycioBHsX, KOTJa €CTh TOJBKO PE3YJIbTATHI
UCIIBITAaHWH XOJIOCTOTO XO0Jla U KOPOTKOTO 3aMbIKaHUs. Pe3ynpraTel aHanm3a paspexenHocTH monenu SINDYc
MOKA3aJIM, YTO B MCCJIEJOBAHHOM JHaNa3oHe MOPOTOBBIX 3HAYEHHH TOYHOCTh HA TECTOBOM BBIOOPKE ITPAKTHYECKH
HC MCHACTCA, B TO BpPEMA KaK KOJIUYECTBO AKTHBHBLIX WICHOB B YpPaBHCHHUAX MEHACTCA YMCEPCHHO. IIJ'IH
OoJIbIIMHCTBA OPOroBbIX 3HaueHui B uHTepBaje 0.01-0.50 ObuU10 Moy4YeHo NPakTHYECKH OMHAKOBBIN CPEAHUM
ypoBeHnb norpemHoctu 0.047808, mpu 5T0M MOJIENb COEPKUT OKOJIO 225 HeHyJIeBBIX WIeHOB. B Xo/e mpoBepku
JIOCTOBEPHOCTH UACHTU(HUIIHPOBaHHON Moenu SINDY ¢ Oblia mosyueHa cTaOMIbHAS YUCIICHHAS] CUMYJISAIHS Ha
BCEM TECTOBOM HMHTCPBAJIC, YTO YKa3bIBaCT Ha MNPUTOAHOCTH Haﬁ}leHHOﬁ CHUCTEMBI ypaBHCHHﬁ Kak
IMPOTHOCTUYIECKOEC HpI/I6J'II/I)KeHI/Ie JUHAMUKH.

Kniouesvie cnosa: veron SINDYc, acMHXpOHHBIH 3JIEKTPUYECKUI ABUraTENb, 3JIEKTPOMATHUTHBIA MOMEHT,
POTOP, MOZICITUPOBAHHE.

INTRODUCTION in the initial periods of movement — start-up
mode, and steady-state operation modes. Motor
overload, beating or jamming of the rotor of an
asynchronous electric motor lead to overheating
of the electrical windings, destruction of
insulation and the appearance of other
malfunctions [11-14], which lead to emergency
operation of the electric motor and the
impossibility of its further operation without
repair work.

Under industrial operating conditions, motors
age and lose their properties over time [15-19].
Continuous  operation  involves  complex
interactions  between electromagnetic and
mechanical ~ subsystems.  These inherent
operational factors create constant loads on
bearing assemblies and induce vibrations which
eventually accelerate the wear of electrical
machine elements [20]. This leads to machine
failure and disruption of technological processes,
which in turn leads to material losses,
underproduction, plant downtime, etc.

Traditional physically oriented models, in
particular multi-loop equivalent circuits, describe
the operation of induction motors well, but their
accuracy relies heavily on precise knowledge of

Asynchronous motors are the most common
type of electric machines — they account for about
80% of rotating mechanisms in modern industry
in different countries of the world [1]. This is a
consequence of the simplicity of design,
reliability, low cost and high efficiency of
asynchronous motors [2]. One of the main criteria
is the availability of a wide range of asynchronous
motors with different power characteristics, and
their availability on the markets is also an
advantage. Asynchronous electric motors have
become widespread in renewable energy
facilities, namely biogas technologies [3-6].

Ensuring effective fermentation of raw
materials in a biogas reactor is achieved by
creating the necessary microclimate in the biogas
reactor and ensuring a homogeneous substance.
For this purpose, various mixing devices are used
[7-10], the drives of which are asynchronous
electric motors.

The raw materials in the biogas reactor change
their physicochemical composition in the process
of anaerobic fermentation, which leads to
compaction of the sediment and unpredictability
of changes in the torque on the electric motor shaft
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the machine parameters [21]. In industrial
scenarios, where exact parameters and varying
operating conditions are often unknown or
fluctuate, the model’s fidelity decreases.
Consequently, adapting such models to reflect the
actual state of the machine requires continuous
parameter  identification and  additional
measurements, which complicates practical
implementation [21].

Today, there are many strategies and methods
for monitoring the condition of induction motors,
including the preventive maintenance approach.
This approach is based on continuous monitoring
of the performance of induction motors in order to
detect faults at the initial stages, all this allows
you to plan repair work before critical situations
arise that lead to equipment failures [22, 23].
However, this approach requires processing a
large amount of experimental data, and
continuous control and monitoring, which is an
energy-intensive solution.

As a result of the emergence of Industry 5.0
and the rapid development of artificial
intelligence, machine learning methods are
becoming increasingly common in systems for
monitoring and detecting faults in asynchronous
motors [1, 24-32]. Classical machine learning
techniques, such as Support Vector Machine
(SVM) [24], Decision Trees [25], and Atrtificial
Neural Networks [26], and other methods, the
description of which is given in more detail in [1,
27-32].

However, these methods are often based on
manual and time-consuming processes of
selecting and extracting relevant features, which
limits their ability to capture complex and
nonlinear patterns in induction motor data.

In recent years, data-driven approaches have
been developed that allow building model
dynamics without a detailed physical description,
using time series of experimentally measured data
[33, 34]. One of such methods is Sparse
Identification of Nonlinear Dynamics with
Control (SINDYc) — an algorithm that restores
sparse, interpreted nonlinear models of dynamic
systems based on experimentally measured data
[21, 35-37]. When applied to electric machines,
this approach has demonstrated high accuracy in
reproducing the dynamics of currents and
electromagnetic torque [34, 37].

Also, the capability of SINDYc to evaluate
complex electromechanical dynamics has been
demonstrated. This is crucial, as the nature of
these dynamic processes defines the operational
stability and determines the rate of wear for
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bearings and mechanical rotating parts [35-37].
Most of the work on the application of SINDYc
relies on complete data sets that contain not only
electrical but also experimentally measured
mechanical parameters: torque, angular velocity,
winding temperature, etc. Obtaining such data
requires conducting long and financially
expensive experiments with a developed
measurement infrastructure — for example, using
encoders to measure speed and loading machines
to control torque [34]. This complicates the initial
verification of the methods, especially when only
standard no-load and short-circuit tests are
available. It is possible to supplement the
experimental research data by mathematical
modeling, which will significantly improve the
quality of subsequent calculations.

Failure of the electric drive for mixing raw
materials in biogas reactors will lead to negative
consequences: loss of raw materials, death of
bacterial colonies, cessation of biogas formation.
All this leads to significant material and capital
costs. Therefore, it is advisable to develop various
methods aimed at assessing the dynamics of
currents and electromagnetic torque under
conditions of limited initial data. This will make
it possible to predict the operating mode of the
electric motor and use the obtained data to
develop automatic control systems for mixing
devices with the consumption of the least amount
of electrical energy for the corresponding type of
raw materials and mixing mode.

This paper proposes an intermediate stage —
mathematical modeling of the possibility of using
SINDY  to estimate the dynamics of currents and
electromagnetic torque under conditions of
limited initial data. We combine the parameters
obtained from no-load and short-circuit
experiments with a dataset of characteristics of
various motors, and the missing values are
restored through calculated relationships. Thus, a
synthetic dataset is formed for training and testing
the method. The aim of this paper is to investigate
the dynamic behavior of induction motors and to
estimate key electromechanical variables using
the SINDYc method, relying solely on results
from standard tests and reference data from AIR
series three-phase induction motors.

RESEARCH METHODOLOGY

The input data for this study include data sets
from no-load and locked-rotor induction motor
tests, as well as a data set of catalog specifications
for standard motors. The measured quantities in
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the data set include: phase-to-phase voltage, V;
phase-to-phase current, A; total active power of
the three-phase network, W.

The averaged line-to-line voltage and line
current:
— Upe +Ugc +Ucy

Ujine = 1
line 3 ( )
I, +1g+1
Ian = A \?? < (2)
where U, average line voltage, V,

U,s, Uy, U, — phase-to-phase voltages, V;

|, —average phase current, A; 1,, I, Ic —

avg
phase currents, A.
Power factor is computed as:

P
\/é'uline : Iavg
— power factor; P — active

CoSp = 3)

where COS¢@

power, W.
Assumes star (YY) connection for the test and
catalog data. Then:

U

U =1 (4)
where U, — phase voltage, V.
I ph = IL (5)

where U , — per-phase RMS voltage, V; |, —

pe-phase RMS current, A.
A first-order no-load per-phase active power
model is:

2
U

P ~_P

0,ph ~

+ wa, ph (6)

C

where By, —no-load per-phase power, W; R,

— core-loss resistance, Ohm; Py, . — per-phase
friction (mechanical loss) power, W.
P —3I2R P
Py on :(0—”'“1):_0_|;th ©)

3 3

where R, — preliminary stator resistance, Ohm.
A linear regression is applied:

P @a-UZ +b (8)

c

R ~ 1 )
a

P ~b (10)

fw, ph

where a — is regression slope, W/V? b — is
regression intercept, W.

To estimate the magnetizing reactance, the no-
load current is split into core-loss and
magnetizing components:

U
| =— 11
‘=R 11)
L= 1on = 1< (12)
U
X, = (13)

where |, — is core-loss branch current, A; I —

m
is magnetizing current, A; X — is magnetizing

reactance, Ohm.
For locked-rotor conditions, slip is s=1, and the

per-phase input impedance magnitude is
approximated by:
U
z, =" (14)
ph

where Z_ —is per-phase locked-rotor impedance

magnitude, Ohm.
The per-phase active power is:

Psc
Psc. ph = ? (15)

where P, — is total three-phase locked-rotor
active power, W.
The equivalent resistance is estimated by:
P h
"=z (19)
| o

Xe =+ Z& —RE 17)

In the classical T-equivalent representation:
Ry =R +R; (18)

Zy =X+ X (19)
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where R, — is stator resistance, Ohm; Ré —is
rotor resistance referred to stator, Ohm; X, —is

stator leakage reactance, Ohm; Xé — is rotor
leakage reactance referred to stator, Ohm.

Model filters out non-physical points using
0<cosp<1 and excludes the lowest-voltage
regime to reduce noise sensitivity.

Steady-State T-Equivalent Circuit Model
(used for inverse fitting). Synchronous speed and
slip:

w, = 278 (20)
where @, — is stator angular frequency, rad/s; f —
is supply frequency, Hz.

The synchronous speed is:

,

. = —— 21
sync 2p ( )
= (22)
2p
where p — is number of pole; @, - is
synchronous angular speed, rad/s; n, — is
synchronous speed, rpm.
Slip is:
a)sync — Wy,
S= (23)
a)sync
where @, — is rotor speed, rpm.
Per-phase impedance model:
Z, =R, - JX, (24)
Ry , iyl
Z,= ? + X, (25)

where Z, — is stator impedance, Ohm; Z, —is

rotor referred impedance (slip-dependent), Ohm.
The magnetizing branch impedance is:

(11

-1
RC Jxm

where Z_ — is magnetizing branch impedance,

Ohm.

The parallel combination of magnetizing and
rotor branches:

7 =

m

(26)

-1
1 1

= =+ 27

Ed] e

Z,=2,+Z, (28)

where Z, —is per-phase input impedance, Ohm.
The per-phase current phasor is:
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_Uph

_Z_in

where |, — is per-phase input current phasor, A.
Power factor is:

(29)

I,

cosg =cos(~/Z,,) (30)
where £Z, —is the phase angle of Z, , rad.
Three-phase input power:
P, =3%U 1.} (31)

where R{ } - denotes real part; {U 17} -

denotes complex conjugate; P, — is total input

active power, W.
Let the internal (air-gap) voltage be:

U,=U,-1,-2, (32)
where Up — is the per-phase voltage at the

parallel node, V.
Rotor branch current:

(33)

where I; — is rotor current referred to stator, A.
Air-gap power:

/
_ a2 R
P =31 - (34)
where Pag — is air-gap power, W.
Converted electromagnetic power:
Pconv = Pag (1_ S) (35)

where P, —is converted mechanical power, W.

Shaft output power is modeled as:

I:)out = maX(Pconv - Pfa), 0) (36)
where P, — is shaft output power, W; P, —is
mechanical loss power, W.

Efficiency:
POU
n=-2% (37)
where 17 —is efficiency.
Torque:
P
T=-2 (38)
a)m
27m
0, =—— 39
" =60 (39)

where T —is shaft torque, Nm; n —is rotor speed,
rpm.
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Catalog-Constrained Inverse Parameter Fit.
For each catalog row (rated values), the model
estimates:

For each catalog row (rated values), the model
estimates:

0=[R,,X,,R,, XJ,X,,R.,P,,| (40)
Given catalog measurements:
Uil cose,n.,n,, T

where r — denotes rated/catalog values.
The inverse problem minimizes a normalized
residual vector:
min 2
Ir@),

With residual components:
K L (9) -1 Lr
|
cosg(6)—cose,
COSQ,
T(0)-T,

(41)

r

(42)

L,r

—
n(0) -7,

g

Xl — Xé
Z—b
Rl B Ré

L Z,
Where 1, (8),cosp(0),T(6),7(6)
computed by the steady-state model; A4,,4, —are

r

(43)

A

X

A

r

are

soft-prior weights; Z, —is a base impedance used

for scaling, Ohm.
U

Z, = I"“" (44)
L,r
U r

Uy =12 (45)

3

Multi-start bounded least squares is used to
reduce local minima sensitivity.

Matching the unknown motor to catalog
candidates. From the unknown motor tests, a
feature vector is formed:

u=|R., Xy Ry Xoq (46)
From each catalog inverse fit:
¢ =R, X, R X oo | (47)

A log-space weighted distance:
d(u,c) = \/Zk @ (IOglo u, —log, C, )2 (48)
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where @, - are chosen weights; d — is

dimensionless.

Additionally, a curve-based score compares
predicted and measured no-load/locked-rotor
curves using a normalized RMSE. For a quantity:

2
i il“ (yipred )

N

N

Z( imeans)

i=1
where N — is the number of data points; y —
quantity.

Dynamic off induction motor model (time-

domain simulation). Reactance-to-inductance
conversion. Using the fitted reactances:

X

means

=i

NRMSE(y) = \/

(49)

L, = j (50)

L, =% (51)
X

L, = wm (52)

e
where L, —is stator leakage inductance, H; L, —

is rotor leakage inductance referred to stator, H;
L, — is magnetizing inductance, H.

Define:
L, =L,+L, (53)
Lr = L‘r + Lm (54)
LZ
S 55
o} L (55)

where L, — is stator inductance, H; L, —is rotor

inductance, H; o —is leakage factor.
Rotor time constant:

L
T, =—- 56
TR (56)
where 7, —is rotor time constant, s.
Electrical rotor speed:
o, ,=2pw, (57)

where @, , — is rotor electrical angular speed,

rad/s.
State, inputs, and instantaneous voltages. The
state vector is:

X = [isa,isﬂ’l//rafl//rﬁ’a)m]T

where i_ ,i

sa’'’sp

(58)
— are stator currents in aff frame, A;

Yo Wy — are rotor flux linkages in of frame,
Wh.
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The input vector is:
U=[vevip T.J (59)
where v Vy —are instantaneous stator voltages

sa!
inof, V; T, -is load torque, Nm.

The model generates a sinusoidal aff voltage
with ramped peak amplitude:

Ve (t) =U  (t)cos(@,t) (60)

v,,(t)=U, (t)sin(e,t) (61)

U, (t)= ramp(t)v/2U hunom (62)
U LL,nom

U ph,nom = ' (63)

J3
where U ok — IS peak phase voltage amplitude, V;

U — is nominal per-phase RMS voltage, V;

ph,nom
U\ nom — is Nnominal line-to-line RMS voltage, V.
aff flux—current dynamics. Rotor flux
dynamics:
. L. 1
Via=" g = Wiy~ a)r,el//rﬂ (64)
T, T,
L . 1
Vg = _mlsﬂ A7 TO Y, (65)
T, T,
Stator current dynamics:
. 1 . .
I, = IS(VSa - Rl'm - kl//ra) (66)
T R Ky
Isﬁ - I(Vsﬁ - llsﬁ - l//rﬂ) (67)
L
k=—" (68)
LI’
Electromagnetic torque:
3, L, . .
Te =_2 p— (l//ralsﬁ - l//rﬁlsa) (69)
2 L,
where T, — is electromagnetic torque, Nm.
Mechanical equation:
Jo, =T,-T —Ba, (70)

where J — is inertia, kgm?; B - is viscous friction
coefficient, Nms/rad.

Pfa)
B~— (71)

a)m,rated
where @, ...q — IS rated mechanical speed, rad/s.
Dataset construction for SINDYc. The

simulated dataset stores:
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X(8) = [i, (0,55 (0., O 1), 0, ©)]
(72)
ut) = OV, OO @3
where X - contains state trajectories; u - contains
input trajectories.

Time step:
At=t , —t, (74)
Numerical derivatives:
X =V X (75)

where X — is the stacked state matrix; X —is
stacked derivative matrix.
Train/test split and normalization. A time split

atindex Kk defines training and test sets:

Xtrain =X [0 ks] (76)
X = X[k, :N] (77)
Utrain =U [0 : ks] (78)
U, =U[k, :N] (79)
where N — is the number of samples; Kk, — is split
index.
Z-score normalization:
X —
X =2 H (80)
Ox
u, =2 (81)
Oy

where 1, 44, —are per-component means; o, ,

o, —are per-component standard deviations.
Derivative scaling follows:

(82)

SINDYc formulation. SINDYc seeks a sparse
model of the form:

%,(t) = 00x, (t).u, (V)

where X, — is normalized state vector; u,

(83)
—is
normalized input vector; @ — is a library of
candidate nonlinear features; = - is a sparse
coefficient matrix.

Feature library is a polynomial library up to
degree 2:

xiuj,ujui,...J

9=[1,xi,uj,xixk, (84)
where X; — are components of X ; U

i — are

components of u, .

Sparse regression uses Sequential Thresholded
Least Squares (STLSQ).
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Model simulation and error metrics. To
evaluate generalization, the identified SINDYc
model is simulated on the test interval using a
fixed-step RK4 scheme:

x [k+1]=x, [k]+%(k1 +2Kk, + 2k, +k,) (85)

where h — At is step size, s; k..., k, - are RK4
stage derivatives:

x, = f(x,,u,) (86)
RMSE per state:
Rwse ! = [ ST (6 [ < [F) - (67)
Physical-unit reconstruction:
XiprEd = er’;ed oX,i+ X, i (88)

where x""* — has the physical units of state i .
RMSE in physical units:

N
k=1

= -5 )

(89)
Sparsity sweeps and final model selection. A
set of thresholds 1 € {4,,..., 4,, } is evaluated. For

each A the model computes:
Nterms (ﬂ“) :#ﬂﬂ > O}

RMSE, ()=~ %, RSMEL(2) ()

RMSE " =\/ﬁz

(90)

where n, — is number of states.

A Pareto-style selection is applied: choose the
simplest model whose error is within a tolerance
of the best:

RMSE, (1)< (1+8)]""RMSE, (1) (92)
where ¢ — is allowable degradation.

RESULTS AND DISCUSSION

Based on the results of identification from no-
load and locked-rotor tests, the following
estimates of the parameters of the equivalent
circuit were obtained for the Y connection:

R, =143833 Ohm, X, =123923 Ohm,
Req:3.148 Ohm, Xeq:9.661 Ohm,

Z..=10.161 Ohm. For the locked-rotor mode,
after filtering by the physically correct power
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factor, only two valid points were used, which
reduces the stability of R, , X, and, as expected,

increases the uncertainty of comparing the
locked-rotor curves. Selection of the closest

catalog analogue by features [RC, X Regs X

and additional verification of the consistency of
the curves gave the best candidate 3.0 kW, 400 V,
2904 rpm, 2 poles, n~87.1%, j=0.0069
kgm?, Moreover, the gap from the second
candidate according to the distance metric is
about 28% (ratio~1.28), that is, the choice is
justified, but not absolutely unambiguous. For the
selected candidate, the inverse parameter

estimation gave R, ~R,=1.400 Ohm,
X, ~ X, =3.9410 Ohm, X =151.084 Ohm,

R =876.144 Ohm, P, =5581 W. The

derived dynamical parameters correspond to a
physically plausible small scattering coefficient
o~0.05 and consistent time constants

T, =T, =0.352 s, which is a consequence of the

close symmetry of the pairs R, /R, and L /L, .

Comparison of experimental and calculated
static characteristics showed that the no-load
current at low voltages is reproduced

satisfactorily, however, in the zone of large U |
the model systematically underestimates |,

which is consistent with the fact that the linear
magnetic branch does not reflect the increase in
the magnetizing current when approaching the
nominal modes, Figure 1.

The active no-load power in the entire voltage
range is overestimated relative to measurements,
and the discrepancy increases with voltage, which
indicates a mismatch in the level of losses in the
magnetic  branch  and/or the accepted
representation of mechanical/additional losses for
the selected catalog analogue, Figure 2.

For the locked-rotor mode, current and power
reproduce the general trend with voltage, but there
is a transition from underestimation at the lower
point to overestimation at the upper point, which
is expected given the small number of valid
experimental short-circuit points and the use of a
constant parametric model without taking into
account the change in equivalent
resistances/reactivities in the locked-rotor mode
Figure 3 and Figure 4.
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Fig. 1. Dependence of line current on line
voltage in the no-load experiment of a three-
phase asynchronous electric motor.
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Fig. 2. Dependence of active power on line
voltage in the no-load experiment of a three-
phase asynchronous electric motor.
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In general, the obtained results confirm the
correctness of the identification of the motor class
(2-pole, about 3 kW) and the suitability of the
selected parameters as starting ones for further
construction of a dynamic model and synthetic
dataset for SINDYc, while the most significant
inconsistencies are  concentrated in  the
reproduction of no-load losses and in the accuracy
of locked-rotor curves at upper voltages.

The next step was to obtain a dataset for
SINDYc based on a dynamic model of an
asynchronous motor in the ap-coordinate system.
The generated dataset has a size of 4001x14,
which corresponds to modeling at an interval of
2.0 s with a sampling step of 0.0005 s and contains
the full set of values required for SINDYc: time t,

states i,,,i,,¥, ,,W, 4, @,, control influences

V. Vg and T, as well as state derivatives

calculated numerically with a consistent length of
series.
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Fig. 3. Dependence of line current on line
voltage in a short-circuit experiment of a
three-phase asynchronous electric motor.
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Fig. 4. Dependence of active power on line
voltage in a short-circuit experiment of a
three-phase asynchronous electric motor.

The initial rows of the dataset demonstrate the
correct startup transient: at the moment t = 0 all
states are equal to zero, then against the

background of a smooth increase in voltages v, ,
v, small currents and flows appear, and the

mechanical speed in the early steps remains
practically zero. This is expected, because the
electromagnetic moment is still being formed, and
the rotor inertia does not allow the speed to
change instantly. The values of the derivatives at
the start are finite and grow together with the
excitation amplitude, which indicates the absence
of numerical instability or discontinuities in the
control profiles. It is especially important that

Tioaq 1S zero at the beginning, i.e. the first
segment of the data reflects the acceleration mode
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without load, after which (according to the
profile) the data contain several step changes in
the load moment. This creates informative
disturbances for identification and increases the
observability of the connection between the
electrical states and the mechanical subsystem. As
a result, the structure of the dataset is correct for
SINDYc: there are both states, and controls, and
their consistent derivatives with the same time
step, and the numerical values themselves at the
start and the nature of the transition correspond to
the physics of the process, i.e. the data can be
considered adequate for  further  sparse
reconstruction of the equations of motion.

The state matrix X, o, has size (4001, 5), i.e.
it contains 4001 time counts of the five states of
the model i,,i,,w,,.v, ;5 ®,. The control

influence matrix Ug,,, has the size (4001, 3)
and corresponds to the same 4001 samples for the
three inputs v,, v, and T .. The state

derivative matrix X,y also has size (4001.5),
which means there is no shift in lengths between

X, U, X . A critically important condition for the
correct solution of the regression problem in
SINDYc, since each state time reference
corresponds to the same control and derivative
time reference.

The sampling step DTgor =05 ms

provides high time resolution for electromagnetic
processes in the aff system, where variables can
have rapid oscillations at the power frequency.
Such discretization reduces the error of numerical
differentiation when calculating X and improves
the quality of subsequent reconstruction of
equations, especially for terms containing the
interaction of electrical and mechanical variables.

Such discretization reduces the error of

numerical differentiation when calculating X
and improves the quality of subsequent
reconstruction of equations, especially for terms
containing the interaction of electrical and
mechanical variables.

The simulation time graphs in af-coordinates
demonstrate physically plausible drive dynamics
with given profiles, Figure 5-7.
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Fig. 5. Dependence of setting the nominal
rotor speed of a three-phase asynchronous
electric motor in the transient mode.

4“[
"ml"l

0.25

1.2%

Stator currents (alpha-beta)

Lalpha

30 4 1_beta

-
o

,Wn S ,,,'!‘]‘;if“]’f!|‘i||‘ |‘i l' mlhhhll.uhs.l i
o ‘4| A AU

r’l

-10 4

A

"

0 4

-30 4

030 075 100 125 150 173 2.00

Ls

0.00

Fig. 6. Dependence of the change in the stator
current of a three-phase electric motor in the
transient mode (starting mode).

The speed increases from zero to the near-
synchronous region (3000 rpm) in approximately
0.3-0.4 s with a slight overshoot and subsequent
settling. This corresponds to the acceleration of an
asynchronous motor as the voltage increases.

Stator currents i, and i, have the largest
amplitude during start-up (typical starting
current), after which they decrease in steady state,

and with step changes in load, corresponding
changes in amplitude are visible. On the moment

graph, the electromagnetic moment T,
qualitatively fulfills the specified profile T, .

At each load jump, a transient process with short-
term peaks/oscillations occurs, after which Te

coincides with the load level in the steady state.
After a load decrease of about 1.4 s, a decline and
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a short transient process T, are observed, which
is also expected.

Electremagnetic torgue vs load
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Fig. 7. Dependence of the change in the
electromagnetic torque of a three-phase
electric motor in the transient mode (starting
mode) in the mode of step change in load.

The next step was to split the sample. The
training part contains 2000 samples (0-1.0 s), the
test part contains 2001 samples (1.0-2.0 s). Since
the sampling step is 0.0005 s, 2000 points
correspond to exactly 1 second of data, and the
test part retains the same sampling frequency and
full dimensionality consistency between the states

X, the inputs U, and the derivatives X . This
division ensures that the model is trained on the
transient acceleration mode and the first part of
the load response, and tested on the following
modes after 1.0 s, where other operating areas and
load changes are present. This is important for
assessing the generalization ability of SINDYc:
the model will not simply repeat the trajectory
from training, but must reproduce the dynamics
on the time interval that was not used in the fitting.

Next, normalization was performed. After
scaling, the dimensions of the arrays did not
change: the full set has 4001 counts for the states

X € R ‘inputs X e R and derivatives

X € R™™ " Similarly, 2000 samples were
stored for the training part, and 2001 for the test
part.

In the test validation of the identified SINDYc
model, a stable numerical simulation was
obtained over the entire test interval (all
trajectories are finite, without divergence), which
indicates the suitability of the found system of
equations as a predictive approximation of
dynamics. The reproduction errors are estimated
via RMSE both in the normalized state space and
after returning to physical units. In the normalized

form, the error for the stator currents is about
0.079 for i, and i,, for the rotor flux linkages

about 0.037 for v, and y, ,, and for the

mechanical angular velocity 0.0247, which
indicates the best agreement for the mechanical
channel and the rotor compared to the current
channels. In physical units, the RMSE is

approximately 0.81 Afor i, and i, about 0.0197

Wb for v, , and v, ,, and 3.09 rad/s for a,,

which is equivalent to approximately 30 rpm.
Thus, the model most accurately reproduces the
speed and rotor fluxes, while the error for currents
is larger, which is typical for derivative-based
identification and can be attributed to the high-
frequency component of the signals and the
sensitivity of RMSE to phase shifts in the
oscillatory components.

After automatic detection of load change
moments, the test section was divided into two
time segments: the first from t=1.0 s to t=1.399 s
(800 counts), the second from t=1.4 s to t=2.0 s
(1201 counts). This division corresponds to the
jump point of the load moment control signal, i.e.,
the change in the operating mode of the electric
drive. The estimation of the model error
separately for each segment showed the expected
degradation of accuracy after the load jump. In
segment 0, the average normalized RMSE for all
states is 0.039, with the smallest errors observed

for the mechanical speed @, (0.0216) and the
rotor flux linkages v, , and v, , (0.027), while

for the currents i, and i, the error is about 0.06.

In segment 1, the average normalized RMSE
increases to 0.058, and the errors for the currents
increase to 0.0893, for the flux linkages to 0.0423,
and for the speed to 0.0265.

The results of the sparsity sweep of the
SINDYc¢ model showed that in the studied range
of STLSQ thresholds, the accuracy on the test
sample almost does not change, while the number
of active terms in the equations changes
moderately. For most threshold values in the
interval 0.01-0.50, almost the same average error
level was obtained: 0.047808, while the model
contains about 225 non-zero terms. This means
that in this range, regularization is not a limiting
factor: the structure of the feature library and the
data lead to almost the same solution, and
changing the threshold does not affect the
consistency of the model with the test dynamics.
Increasing the threshold to 0.80 gave the lowest
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average error among the tested options
(0.047772) at 223 terms. At the same time, further
increasing the sparsity to 1.20 reduced the model
complexity to 216 terms, but led to a slight
deterioration in accuracy (0.047843). The
difference in error between these models is very
small (on the order of 10*), indicating actual
equivalence in accuracy at different levels of
complexity.

According to the results of sparsity selection,
the final model was selected according to the rule
almost the best accuracy + minimum complexity.
Then, an allowable deterioration in accuracy of
3% was set, so the threshold value was
0.0492048. Among all the models that fell into
this quality corridor, the option with the smallest
number of active members was selected:
threshold 1.2, 216 non-zero terms, while the
average error remained practically at the optimum
level. This means that a small fee in accuracy
(compared to the absolute minimum) is
compensated by a noticeably simpler structure of
the equations, which increases interpretability and
reduces the risk of overtraining without losing the
adequacy of reproducing the test dynamics.

In the test interval (t = 1.0-2.0 s), the final
SINDYc model after selection according to the
criterion 3% of the best RMSE + minimum terms
(threshold 1.2, 216 active members) demonstrate
stable reproduction of the dynamics of all five
states in the normalized space and in physical
units. According to the integral error estimate, the

RMSE (normalized) for the currents i, and i,

was obtained at the level of 0.0734, for the rotor
flux linkages v, , and y, , about 0.0343, and

for the mechanical angular velocity ., 0.0237.

In physical units, this corresponds to RMSE 0.754
A for each current component, 0.01827 (in your
units for flux linkage used in the model) for the
rotor flux linkage components, and 2.97 rad/s for

@, . This distribution of errors is expected: the

speed as a slow state is reproduced more
accurately, while the currents are more sensitive
to non-smooth load changes and contain a
pronounced oscillatory component at the supply
frequency.
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Fig. 8. Dependence of the change in the stator
current of a three-phase electric motor in the
transient mode (starting mode) in the a
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Fig. 9. Dependence of the change in the stator
current of a three-phase electric motor in the
transient mode (starting mode) in the §
coordinates.
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Fig. 10. Dependence of the change in the value
of the flux linkage of the rotor of a three-
phase electric motor in the transient mode
(starting mode) in the a coordinates.
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Test: psi_r_beta (physical)

Fig. 11. Dependence of the change in the value
of the flux linkage of the rotor of a three-
phase electric motor in the transient mode
(starting mode) in the p coordinates.
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Fig. 12. Dependence of the change in the
angular frequency of the rotor of a three-
phase electric motor in the transient mode

(starting mode).

Figure 8-12, comparison on the test interval
shows that the SINDYc model well reproduces
the phase and amplitude of fast vibration

components for i,,i,,w, v, ;, andadequately

reproduces the response to a change in load at a
time of about t = 1.4 s. The most noticeable
systematic discrepancy is manifested precisely in
the speed: after a load jump, SINDY¢ reproduces
the correct transient behavior (overshoot and
damping), but exhibits a shift of the steady-state

level w,, relative to the measured trajectory. This

behavior is consistent with the fact that the
mechanical channel is integrating and sensitive to
small errors in the reproduction of torque and
losses (friction/load); even a small error in the
model of the interconnection of currents and flux
linkages leads to the accumulation of a difference
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in speed, so it is @, that is often the most
demanding variable for data-driven identification.

CONCLUSIONS

The article studies the dynamic behavior of
induction  motors and  estimates  key
electromechanical parameters using the SINDYc
method in conditions where only the results of no-
load and short-circuit tests and a dataset with
reference data of various three-phase induction
motors of the AIR series are available.

The work obtained the parameters of the
equivalent circuit from no-load and short-circuit,
which became the basis for building mechanical
and electrical models of the motor. The dynamics
of signals (currents, voltages, torque, unbalanced
magnetic force) was calculated based on the
mechanical model of rotor acceleration and
electrical variables agreed with it. The SINDYc
model was built and trained. During the
verification of the validity of the identified
SINDYc model, a stable numerical simulation
was obtained over the entire test interval (all
trajectories are finite, without divergence), which
indicates the suitability of the found system of
equations as a predictive approximation of
dynamics. Reproduction errors are estimated with
the help of RMSE both in the normalized state
space and after returning to physical units. In the
normalized form, the error for the stator currents
is about 0.079, for the flux-coupled rotor about
0.037, and for the mechanical angular velocity
0.0247, which indicates the best correspondence
for the mechanical channel and the rotor
compared to the current channels. The results of
the analysis of the sparseness of the SINDYc
model showed that in the studied range of STLSQ
threshold values, the accuracy on the test sample
practically does not change, while the number of
active terms in the equations changes moderately.
For most of the threshold values in the interval
0.01-0.5, an almost identical average error level
was obtained: 0.047808, while the model contains
about 225 non-zero terms. An assessment of the
change in the stator current and the value of the
rotor flux linkage of a three-phase electric motor
in the transient mode (starting mode) in the
coordinates o and p was carried out. As a result of
the conducted research, it was found that the
SINDYc method is advisable to use for predicting
key electromechanical parameters of electric
motors in the absence of information on the nature
of power loads, which is typical for mixing
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systems in biogas plants and other technological
processes.
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