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Abstract. The aim of the work is to study the dynamic behavior of induction motors and estimate key 

electromechanical parameters using the SINDYc method in conditions where only the results of no-load 

and short-circuit tests and a dataset with reference data of various three-phase induction motors of the 

AIR series are available. To achieve this goal, general physics methods, three-dimensional modeling, 

processing and visualization of results in the Wolfram Mathematica program were used. The working 

hypothesis of the research is to investigate the possibilities of using SINDYc to estimate the dynamics 

of key electromechanical parameters of three-phase induction motors, subject to limited input data and 

the availability of reference data of various three-phase induction motors of the AIR series. The most 

important result is the combination of parameters obtained from experiments of no-load and short-circuit 

of a three-phase asynchronous motor with a dataset of characteristics of various motors of the 

corresponding series, and unknown quantities are found using the developed mathematical model and 

the use of calculation relations given in this work. The significance of the research results obtained in 

the work lies in the fact that based on the developed method, it is possible to analyze the dynamic 

behavior of asynchronous motors and evaluate the dynamics of key electromechanical parameters of an 

electric motor using the SINDYc method in conditions when only the results of no-load and short-circuit 

tests are available. The results of the analysis of the sparsity of the SINDYc model showed that in the 

studied range of threshold values, the accuracy on the test sample practically does not change, while the 

number of active terms in the equations changes moderately.
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Estimarea parametrilor unui motor cu inducție trifazat pe baza datelor experimentale și a rezultatelor 

modelării bazate pe SINDYc

Spodoba M.O., Spodoba О.O., Kovaliciuk S.I.

Universitatea Națională a resurselor biologice li utilizarea naturii a Ucrainei, Kyiv, Ucraina

Rezumat. Scopul lucrării este de a studia comportamentul dinamic al motoarelor asincrone și evaluarea

parametrilor electromecanici cheie utilizând metoda SINDYc în condiții în care sunt disponibile doar rezultatele 

testelor la mers în gol și la scurtcircuit și un set de date cu valori de referință pentru diferite motoare asincrone 

trifazate din seria AIR. Pentru atingerea obiectivelor, au fost utilizate metode generale a fizicii, modelare 

tridimensională, procesare și vizualizare a rezultatelor în programul Wolfram Mathematica. Ipoteza de lucru a 

cercetării este de a investiga posibilitățile de utilizare a SINDYc pentru a estima dinamica parametrilor 

electromecanici cheie ai motoarelor asincrone trifazate, în condițiile unor date de intrare limitate și a disponibilității 

datelor de referință ale diferitelor motoare asincrone trifazate din seria AIR. Cel mai important rezultat constă în 

combinarea parametrilor obținuți din experimentele de mers în gol și în scurtcircuit ale unui motor asincron trifazat 

cu un set de date cu caracteristicile diferitelor motoare din seria corespunzătoare, iar mărimile necunoscute sunt 

găsite folosind modelul matematic elaborat și utilizarea relațiilor de calcul prezentate în această lucrare. 

Semnificația rezultatelor cercetării obținute în lucrare constă în faptul că, pe baza metodei elaborate, este posibilă 

analiza comportamentului dinamic al motoarelor asincrone și evaluarea dinamicii parametrilor electromecanici 

cheie ai unui motor electric utilizând metoda SINDYc în condiții în care sunt disponibile doar rezultatele testelor 

la mers în gol și la scurtcircuit. 

Cuvinte-cheie: metoda SINDYc, motor electric asincron, cuplu electromagnetic, rotor, modelare.
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Оценка параметров трехфазного асинхронного двигателя за экспериментальными данными и 

расчетом модели на основе SINDYc

Сподоба М.А., Сподоба А.А., Ковальчук С.И.

Национальный университет биоресурсов и природопользования Украины, Киев, Украина

Аннотация. Целью работы является исследование динамического поведения асинхронных двигателей и 

оценка ключевых электромеханических параметров с использованием метода SINDYc в условиях, когда 

есть только результаты испытаний холостого хода, короткого замыкания и датасет с эталонными данными 

различных трехфазных асинхронных двигателей серии АИР. Для достижения поставленных целей 

использовались общие методы физики, трехмерное моделирование, обработка и визуализация результатов 

в программе Wolfram Mathematica. Рабочая гипотеза исследований состоит в том, чтобы исследовать 

возможности применения SINDYc для оценки динамики ключевых электромеханических параметров 

трехфазных асинхронных двигателей при ограничении исходных данных и наличии эталонных данных 

различных трехфазных асинхронных двигателей серии АИР. Наиболее важным результатом является 

сочетание параметров полученных из эксериментов холостого хода и короткого замыкания трехфазного 

асинхронного двигателя с датасетом характеристик различных двигателей соответствующей серии, а 

неизвестные величины находятся с помощью разработанной математической модели и использования 

расчетных соотношений, приведенных в данной работе. Значимость полученных в работе результатов 

исследований состоит в том, что на основе разработанного метода можно проводить анализ динамического 

поведения асинхронных двигателей и проведение оценки динамики ключевых электромеханических 

параметров электрического двигателя методом SINDYc в условиях, когда есть только результаты 

испытаний холостого хода и короткого замыкания. Результаты анализа разреженности модели SINDYc 

показали, что в исследованном диапазоне пороговых значений точность на тестовой выборке практически 

не меняется, в то время как количество активных членов в уравнениях меняется умеренно. Для 

большинства пороговых значений в интервале 0.01–0.50 было получено практически одинаковый средний 

уровень погрешности 0.047808, при этом модель содержит около 225 ненулевых членов. В ходе проверки 

достоверности идентифицированной модели SINDYc была получена стабильная численная симуляция на 

всем тестовом интервале, что указывает на пригодность найденной системы уравнений как 

прогностическое приближение динамики. 

Ключевые слова: метод SINDYc, асинхронный электрический двигатель, электромагнитный момент, 

ротор, моделирование.

INTRODUCTION

Asynchronous motors are the most common 

type of electric machines – they account for about 

80% of rotating mechanisms in modern industry 

in different countries of the world [1]. This is a 

consequence of the simplicity of design, 

reliability, low cost and high efficiency of 

asynchronous motors [2]. One of the main criteria 

is the availability of a wide range of asynchronous 

motors with different power characteristics, and 

their availability on the markets is also an 

advantage. Asynchronous electric motors have 

become widespread in renewable energy 

facilities, namely biogas technologies [3-6].

Ensuring effective fermentation of raw 

materials in a biogas reactor is achieved by 

creating the necessary microclimate in the biogas 

reactor and ensuring a homogeneous substance. 

For this purpose, various mixing devices are used 

[7-10], the drives of which are asynchronous 

electric motors.

The raw materials in the biogas reactor change 

their physicochemical composition in the process 

of anaerobic fermentation, which leads to 

compaction of the sediment and unpredictability 

of changes in the torque on the electric motor shaft 

in the initial periods of movement – start-up 

mode, and steady-state operation modes. Motor 

overload, beating or jamming of the rotor of an 

asynchronous electric motor lead to overheating 

of the electrical windings, destruction of 

insulation and the appearance of other 

malfunctions [11-14], which lead to emergency 

operation of the electric motor and the 

impossibility of its further operation without 

repair work.

Under industrial operating conditions, motors 

age and lose their properties over time [15-19]. 

Continuous operation involves complex 

interactions between electromagnetic and 

mechanical subsystems. These inherent 

operational factors create constant loads on 

bearing assemblies and induce vibrations which 

eventually accelerate the wear of electrical 

machine elements [20]. This leads to machine 

failure and disruption of technological processes, 

which in turn leads to material losses, 

underproduction, plant downtime, etc.

Traditional physically oriented models, in 

particular multi-loop equivalent circuits, describe 

the operation of induction motors well, but their 

accuracy relies heavily on precise knowledge of 
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the machine parameters [21]. In industrial 

scenarios, where exact parameters and varying 

operating conditions are often unknown or 

fluctuate, the model’s fidelity decreases. 

Consequently, adapting such models to reflect the 

actual state of the machine requires continuous 

parameter identification and additional 

measurements, which complicates practical 

implementation [21].

Today, there are many strategies and methods 

for monitoring the condition of induction motors, 

including the preventive maintenance approach. 

This approach is based on continuous monitoring 

of the performance of induction motors in order to 

detect faults at the initial stages, all this allows 

you to plan repair work before critical situations 

arise that lead to equipment failures [22, 23]. 

However, this approach requires processing a 

large amount of experimental data, and 

continuous control and monitoring, which is an 

energy-intensive solution.

As a result of the emergence of Industry 5.0 

and the rapid development of artificial 

intelligence, machine learning methods are 

becoming increasingly common in systems for 

monitoring and detecting faults in asynchronous 

motors [1, 24-32]. Classical machine learning 

techniques, such as Support Vector Machine 

(SVM) [24], Decision Trees [25], and Artificial 

Neural Networks [26], and other methods, the 

description of which is given in more detail in [1, 

27-32].

However, these methods are often based on 

manual and time-consuming processes of 

selecting and extracting relevant features, which 

limits their ability to capture complex and 

nonlinear patterns in induction motor data.

In recent years, data-driven approaches have 

been developed that allow building model 

dynamics without a detailed physical description, 

using time series of experimentally measured data 

[33, 34]. One of such methods is Sparse 

Identification of Nonlinear Dynamics with 

Control (SINDYc) – an algorithm that restores 

sparse, interpreted nonlinear models of dynamic 

systems based on experimentally measured data 

[21, 35-37]. When applied to electric machines, 

this approach has demonstrated high accuracy in 

reproducing the dynamics of currents and 

electromagnetic torque [34, 37].

Also, the capability of SINDYc to evaluate 

complex electromechanical dynamics has been 

demonstrated. This is crucial, as the nature of 

these dynamic processes defines the operational 

stability and determines the rate of wear for 

bearings and mechanical rotating parts [35-37].

Most of the work on the application of SINDYc 

relies on complete data sets that contain not only 

electrical but also experimentally measured 

mechanical parameters: torque, angular velocity, 

winding temperature, etc. Obtaining such data 

requires conducting long and financially 

expensive experiments with a developed 

measurement infrastructure – for example, using 

encoders to measure speed and loading machines 

to control torque [34]. This complicates the initial 

verification of the methods, especially when only

standard no-load and short-circuit tests are 

available. It is possible to supplement the 

experimental research data by mathematical 

modeling, which will significantly improve the 

quality of subsequent calculations.

Failure of the electric drive for mixing raw 

materials in biogas reactors will lead to negative 

consequences: loss of raw materials, death of 

bacterial colonies, cessation of biogas formation. 

All this leads to significant material and capital 

costs. Therefore, it is advisable to develop various

methods aimed at assessing the dynamics of 

currents and electromagnetic torque under 

conditions of limited initial data. This will make 

it possible to predict the operating mode of the 

electric motor and use the obtained data to 

develop automatic control systems for mixing 

devices with the consumption of the least amount 

of electrical energy for the corresponding type of 

raw materials and mixing mode.

This paper proposes an intermediate stage –

mathematical modeling of the possibility of using 

SINDYc to estimate the dynamics of currents and 

electromagnetic torque under conditions of 

limited initial data. We combine the parameters 

obtained from no-load and short-circuit 

experiments with a dataset of characteristics of 

various motors, and the missing values are 

restored through calculated relationships. Thus, a 

synthetic dataset is formed for training and testing 

the method. The aim of this paper is to investigate 

the dynamic behavior of induction motors and to 

estimate key electromechanical variables using 

the SINDYc method, relying solely on results 

from standard tests and reference data from AIR 

series three-phase induction motors.

RESEARCH METHODOLOGY

The input data for this study include data sets 

from no-load and locked-rotor induction motor 

tests, as well as a data set of catalog specifications 

for standard motors. The measured quantities in 
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the data set include: phase-to-phase voltage, V; 

phase-to-phase current, A; total active power of 

the three-phase network, W.

The averaged line-to-line voltage and line 

current:

3

CABCAB
line

UUU
U

++
= (1)

3

CBA
avg

III
I

++
= (2)

where 
lineU – average line voltage, V; 

CABCAB UUU ,, – phase-to-phase voltages, V; 

avgI – average phase current, A; CBA III ,, –

phase currents, А.

Power factor is computed as:

avgline IU

P


=

3
cos                  (3)

where cos – power factor; Р – active 

power, W.

Assumes star (Y) connection for the test and 

catalog data. Then:

3

line
ph

U
U =                        (4)

where phU – phase voltage, V.

Lph II =                              (5)

where phU – per-phase RMS voltage, V; phI –

pe-phase RMS current, A.

A first-order no-load per-phase active power 

model is:

phf

c

ph

ph P
R

U
P ,

2

,0 +              (6)

where phP ,0 – no-load per-phase power, W; cR

– core-loss resistance, Ohm; phfP , – per-phase 

friction (mechanical loss) power, W.

( )
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201

2

0

,0
33
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P ph

ph

ph −=
−

=    (7)

where 1R – preliminary stator resistance, Ohm.

A linear regression is applied:

bUaP phph + 2

,0              (8)

a
Rc

1
                       (9)

bP phf ,                   (10)

where а – is regression slope, W/V2; b – is 

regression intercept, W.

To estimate the magnetizing reactance, the no-

load current is split into core-loss and 

magnetizing components:

c

ph

c
R

U
I =                        (11)

22

cphm III −=                 (12)

m

ph

m
I

U
X =                       (13)

where 
cI – is core-loss branch current, A;

mI –

is magnetizing current, A; 
mX – is magnetizing 

reactance, Ohm.

For locked-rotor conditions, slip is s=1, and the 

per-phase input impedance magnitude is 

approximated by:

ph

ph

sc
I

U
Z =                      (14)

where scZ – is per-phase locked-rotor impedance 

magnitude, Ohm.

The per-phase active power is:

3
.

sc
phsc

P
P =                      (15)

where scP – is total three-phase locked-rotor 

active power, W.

The equivalent resistance is estimated by:

2

.

ph

phsc

eq
I

P
R =                      (16)

22

eqsceq RZX −=                 (17)

In the classical T-equivalent representation:
/

21 RRReq +=                        (18)

/

21 XXZ eq +=                       (19)
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where 1R – is stator resistance, Ohm; 
/

2R – is 

rotor resistance referred to stator, Ohm; 1X – is 

stator leakage reactance, Ohm; 
/

2X – is rotor 

leakage reactance referred to stator, Ohm.

Model filters out non-physical points using 

1cos0   and excludes the lowest-voltage 

regime to reduce noise sensitivity.

Steady-State T-Equivalent Circuit Model 

(used for inverse fitting). Synchronous speed and 

slip:

fe  2=                      (20)

where 
e – is stator angular frequency, rad/s; f –

is supply frequency, Hz.

The synchronous speed is:

p

e
sync

2


 =                      (21)

p

f
ns

2

60
=                      (22)

where p – is number of pole; sync – is 

synchronous angular speed, rad/s; 
sn – is 

synchronous speed, rpm.

Slip is:

sync

msync
s



 −
=                      (23)

where 
m – is rotor speed, rpm.

Per-phase impedance model:

111 jXRZ −=                      (24)

/

2

/

2
2 jX

s

R
Z +=                      (25)

where 1Z – is stator impedance, Ohm; 2Z – is 

rotor referred impedance (slip-dependent), Ohm.

The magnetizing branch impedance is:
1

11
−














+=

mc

m
jXR

Z                (26)

where mZ – is magnetizing branch impedance, 

Ohm.

The parallel combination of magnetizing and 

rotor branches:
1

2

11
−











+=

ZZ
Z

m

p                (27)

pin ZZZ += 1                      (28)

where inZ – is per-phase input impedance, Ohm.

The per-phase current phasor is:

in

ph

Z

U
I =1                        (29)

where 1I – is per-phase input current phasor, A.

Power factor is:

( )inZ= coscos               (30)

where 
inZ – is the phase angle of 

inZ , rad.

Three-phase input power:

 *

13 IUP phin =               (31)

where   – denotes real part;  *

1IU ph -

denotes complex conjugate; 
inP – is total input 

active power, W.

Let the internal (air-gap) voltage be:

11 ZIUU php −=               (32)

where pU – is the per-phase voltage at the 

parallel node, V.

Rotor branch current:

2

/

2 Z

U
I

ph
=                        (33)

where 
/

2
I – is rotor current referred to stator, A.

Air-gap power:

s

R
IP

ag

/

2
2

/

23=                        (34)

where 
ag

P – is air-gap power, W.

Converted electromagnetic power:

( )sPP agconv −= 1                        (35)

where 
convP – is converted mechanical power, W.

Shaft output power is modeled as:

( )0max ,fconvout PPP −=                 (36)

where 
outP – is shaft output power, W; fP – is 

mechanical loss power, W.

Efficiency:

in

out

P

P
=                            (37)

where  – is efficiency.

Torque:

m

outP
T


=                            (38)

60

2 n
m


 =                            (39)

where T – is shaft torque, Nm; n – is rotor speed, 

rpm.
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Catalog-Constrained Inverse Parameter Fit. 

For each catalog row (rated values), the model 

estimates:

For each catalog row (rated values), the model 

estimates:

  fcm PRXXRXR ,,,,,, /

2

/

211=     (40)

Given catalog measurements:

rrrrrLrLL TnIU ,,,cos,, ,,      (41)

where r – denotes rated/catalog values.

The inverse problem minimizes a normalized 

residual vector:

( ) 2

2
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
r                            (42)

With residual components:
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Where ( ) ( ) ( ) ( ) ,,cos, TIL – are 

computed by the steady-state model; 
rx  , – are 

soft-prior weights; 
bZ – is a base impedance used 

for scaling, Ohm.

rL

rph

b
I

U
Z

,

,
=                            (44)

3

,

,

rLL

rph

U
U =                           (45)

Multi-start bounded least squares is used to 

reduce local minima sensitivity.

Matching the unknown motor to catalog 

candidates. From the unknown motor tests, a 

feature vector is formed:

 eqeqmc XRXRu ,,,=                            (46)

From each catalog inverse fit:

 eqeqmc XRXRc ,,,=                            (47)

A log-space weighted distance:

( ) −=
k kkk cucud

2

1010 loglog),(     (48)

where 
k – are chosen weights; d – is 

dimensionless.

Additionally, a curve-based score compares 

predicted and measured no-load/locked-rotor 

curves using a normalized RMSE. For a quantity:

( )
( )

( )



=

=

−

=
N

i

means

i

N

i

means

i

pred

i

y

yy
N

yNRMSE

1

2

1

1

   (49)

where N – is the number of data points; y –

quantity.

Dynamic αβ induction motor model (time-

domain simulation). Reactance-to-inductance 

conversion. Using the fitted reactances:

e

ls

X
L


1=                            (50)

e

lr

X
L


2/ =                            (51)

e

m
m

X
L


=                            (52)

where 
lsL – is stator leakage inductance, H; 

/

lrL –

is rotor leakage inductance referred to stator, H;

mL – is magnetizing inductance, H.

Define:

mlss LLL +=                            (53)

mlrr LLL += /
                           (54)

rs

m

LL

L2

1−=                            (55)

where 
sL –  is stator inductance, H; rL – is rotor 

inductance, H;  – is leakage factor.

Rotor time constant:

/

2R

Lr
r =                            (56)

where r – is rotor time constant, s.

Electrical rotor speed:

mer p 2, =                            (57)

where er , – is rotor electrical angular speed, 

rad/s.

State, inputs, and instantaneous voltages. The 

state vector is:

 Tmrrss iiX   ,,,,=              (58)

where  ss ii , – are stator currents in αβ frame, A; 

  rr , – are rotor flux linkages in αβ frame, 

Wb.
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The input vector is:

 TLss Tu ,,  =                     (59)

where   ss , – are instantaneous stator voltages 

in αβ, V; LT - is load torque, Nm.

The model generates a sinusoidal αβ voltage 

with ramped peak amplitude:

( ) ( ) )cos( ttUt epks   =                   (60)

( ) ( ) )sin( ttUt epks   =                    (61)

( ) nomphpk UtramptU ,2)(=             (62)

3

,

,

nomLL

nomph

U
U =                        (63)

where pkU – is peak phase voltage amplitude, V; 

nomphU , – is nominal per-phase RMS voltage, V;

nomLLU , – is nominal line-to-line RMS voltage, V.

αβ flux–current dynamics. Rotor flux 

dynamics:

 


 rerr

r

s

r

m
ra i

L
,

1
−−=•

             (64)

 


 rerr

r

s

r

m
r i

L
,

1
+−=              (65)

Stator current dynamics:

)(
1

1

•• −−=  


rss

s

s kiR
L

i              (66)
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r

m

L

L
k =                                 (68)

Electromagnetic torque:

)(2
2

3
  srsr

r

m
e ii

L

L
pT −=              (69)

where 
eT – is electromagnetic torque, Nm.

Mechanical equation:

mLem BTTJ  −−=                   (70)

where J – is inertia, kgm2; B - is viscous friction 

coefficient, Nms/rad.

2

,ratedm

fP
B




                             (71)

where ratedm, – is rated mechanical speed, rad/s.

Dataset construction for SINDYc. The 

simulated dataset stores:

 )(),(),(),(),()( ttttititx mrrss  =    

(72)

 )(),(),()( tTtttu Lss  =             (73)

where x - contains state trajectories; u - contains 

input trajectories.

Time step:

kk ttt −= +1
                      (74)

Numerical derivatives:

XX t
•

                         (75)

where Х – is the stacked state matrix; 
•

X – is 

stacked derivative matrix.

Train/test split and normalization. A time split 

at index 
sk defines training and test sets:

 strain kXX :0=                     (76)

 NkXX stest :=                    (77)

 strain kUU :0=                      (78)

 NkUU stest :=                    (79)

where N – is the number of samples; 
sk – is split 

index.

Z-score normalization:

X

x
n

X
X



−
=                    (80)

U

U
n

U
U



−
=                    (81)

where 
x , 

U – are per-component means; X , 

U – are per-component standard deviations.

Derivative scaling follows:

X

n

X
X




 =                    (82)

SINDYc formulation. SINDYc seeks a sparse 

model of the form:

( ) ( ) ( )( )= tutxtx nnn ,                    (83)

where nx – is normalized state vector; nu – is 

normalized input vector;  – is a library of 

candidate nonlinear features;  – is a sparse 

coefficient matrix.

Feature library is a polynomial library up to 

degree 2:

 ,...,,,,,1 ijjikiji uuuxxxux=        (84)

where ix – are components of nx ; ju – are 

components of nu .

Sparse regression uses Sequential Thresholded 

Least Squares (STLSQ).
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Model simulation and error metrics. To 

evaluate generalization, the identified SINDYc 

model is simulated on the test interval using a 

fixed-step RK4 scheme:

    ( )4321 22
6

1 kkkk
h

kxkx nn ++++=+   (85)

where h – t is step size, s; 41,..., kk - are RK4 

stage derivatives:

( )nnn uxfx ,=                     (86)

RMSE per state:

( )    ( )2

1 , ,

1i N pred true

n k n i n iRMSE x k x k
N

== −    (87)

Physical-unit reconstruction:

iXiXxx pred

in

pred

i ,,,  +=             (88)

where 
pred

ix – has the physical units of state i .

RMSE in physical units:

( )    ( )2

1

1
kxkx

N
RMSE true

i

pred

i

N

k

i −=  =    

(89)

Sparsity sweeps and final model selection. A 

set of thresholds  M ,...,1 is evaluated. For 

each  the model computes:

( )  0# = termsN                 (90)

( ) ( )( ) i

n

n

i

x

n RSME
n

RMSE x == 1

1
   (91)

where 
xn – is number of states.

A Pareto-style selection is applied: choose the 

simplest model whose error is within a tolerance 

of the best:

( ) ( ) ( )  nn RMSERMSE
min

1+    (92)

where  – is allowable degradation.

RESULTS AND DISCUSSION

Based on the results of identification from no-

load and locked-rotor tests, the following 

estimates of the parameters of the equivalent 

circuit were obtained for the Y connection: 

833.143=cR Ohm, 923.123=mX Ohm, 

148.3=eqR Ohm, 661.9=eqX Ohm, 

161.10=scZ Ohm. For the locked-rotor mode, 

after filtering by the physically correct power 

factor, only two valid points were used, which 

reduces the stability of eqR , eqX and, as expected, 

increases the uncertainty of comparing the 

locked-rotor curves. Selection of the closest 

catalog analogue by features  eqeqmc XRXR ,,,

and additional verification of the consistency of 

the curves gave the best candidate 3.0 kW, 400 V, 

2904 rpm, 2 poles, %1.87 , 0069.0=j

kgm2, Moreover, the gap from the second 

candidate according to the distance metric is 

about 28% ( 28.1ratio ), that is, the choice is 

justified, but not absolutely unambiguous. For the 

selected candidate, the inverse parameter 

estimation gave 400.1'

21 = RR Ohm, 

9410.3'

21 = XX Ohm, 084.151=mX Ohm, 

144.876=cR Ohm, 81.55=mechP W. The 

derived dynamical parameters correspond to a 

physically plausible small scattering coefficient 

05.0 and consistent time constants 

352.0 rs TT s, which is a consequence of the 

close symmetry of the pairs 
'

21 / RR and 
rs LL / .

Comparison of experimental and calculated 

static characteristics showed that the no-load 

current at low voltages is reproduced 

satisfactorily, however, in the zone of large LLU

the model systematically underestimates oI , 

which is consistent with the fact that the linear 

magnetic branch does not reflect the increase in 

the magnetizing current when approaching the 

nominal modes, Figure 1.

The active no-load power in the entire voltage 

range is overestimated relative to measurements, 

and the discrepancy increases with voltage, which 

indicates a mismatch in the level of losses in the 

magnetic branch and/or the accepted 

representation of mechanical/additional losses for 

the selected catalog analogue, Figure 2.

For the locked-rotor mode, current and power 

reproduce the general trend with voltage, but there 

is a transition from underestimation at the lower 

point to overestimation at the upper point, which 

is expected given the small number of valid 

experimental short-circuit points and the use of a 

constant parametric model without taking into 

account the change in equivalent 

resistances/reactivities in the locked-rotor mode 

Figure 3 and Figure 4.
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Fig. 1. Dependence of line current on line 

voltage in the no-load experiment of a three-

phase asynchronous electric motor.

Fig. 2. Dependence of active power on line 

voltage in the no-load experiment of a three-

phase asynchronous electric motor.

In general, the obtained results confirm the 

correctness of the identification of the motor class 

(2-pole, about 3 kW) and the suitability of the 

selected parameters as starting ones for further 

construction of a dynamic model and synthetic 

dataset for SINDYc, while the most significant 

inconsistencies are concentrated in the 

reproduction of no-load losses and in the accuracy 

of locked-rotor curves at upper voltages.

The next step was to obtain a dataset for 

SINDYc based on a dynamic model of an 

asynchronous motor in the αβ-coordinate system. 

The generated dataset has a size of 4001х14, 

which corresponds to modeling at an interval of 

2.0 s with a sampling step of 0.0005 s and contains 

the full set of values required for SINDYc: time t, 

states mrrii   ,,,, ,, , control influences 

 ,  and LoadT , as well as state derivatives 

calculated numerically with a consistent length of 

series.

Fig. 3. Dependence of line current on line

voltage in a short-circuit experiment of a 

three-phase asynchronous electric motor.

Fig. 4. Dependence of active power on line 

voltage in a short-circuit experiment of a 

three-phase asynchronous electric motor.

The initial rows of the dataset demonstrate the 

correct startup transient: at the moment t = 0 all 

states are equal to zero, then against the 

background of a smooth increase in voltages  , 

 small currents and flows appear, and the 

mechanical speed in the early steps remains 

practically zero. This is expected, because the 

electromagnetic moment is still being formed, and 

the rotor inertia does not allow the speed to 

change instantly. The values of the derivatives at 

the start are finite and grow together with the 

excitation amplitude, which indicates the absence 

of numerical instability or discontinuities in the 

control profiles. It is especially important that 

LoadT is zero at the beginning, i.e. the first 

segment of the data reflects the acceleration mode 
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without load, after which (according to the 

profile) the data contain several step changes in 

the load moment. This creates informative 

disturbances for identification and increases the 

observability of the connection between the

electrical states and the mechanical subsystem. As 

a result, the structure of the dataset is correct for 

SINDYc: there are both states, and controls, and 

their consistent derivatives with the same time 

step, and the numerical values themselves at the 

start and the nature of the transition correspond to 

the physics of the process, i.e. the data can be 

considered adequate for further sparse 

reconstruction of the equations of motion.

The state matrix 
SINDYX has size (4001, 5), i.e. 

it contains 4001 time counts of the five states of 

the model mrrii   ,,,, ,, . The control 

influence matrix 
SINDYU has the size (4001, 3) 

and corresponds to the same 4001 samples for the 

three inputs  ,  and 
LoadT . The state 

derivative matrix 
SINDYX also has size (4001.5), 

which means there is no shift in lengths between 

X, U, X . A critically important condition for the 

correct solution of the regression problem in 

SINDYc, since each state time reference 

corresponds to the same control and derivative 

time reference.

The sampling step 5.0=SINDTYDT ms

provides high time resolution for electromagnetic 

processes in the αβ system, where variables can 

have rapid oscillations at the power frequency. 

Such discretization reduces the error of numerical 

differentiation when calculating X and improves 

the quality of subsequent reconstruction of 

equations, especially for terms containing the 

interaction of electrical and mechanical variables.

Such discretization reduces the error of 

numerical differentiation when calculating X
and improves the quality of subsequent 

reconstruction of equations, especially for terms 

containing the interaction of electrical and 

mechanical variables.

The simulation time graphs in αβ-coordinates 

demonstrate physically plausible drive dynamics 

with given profiles, Figure 5-7.

Fig. 5. Dependence of setting the nominal 

rotor speed of a three-phase asynchronous 

electric motor in the transient mode.

Fig. 6. Dependence of the change in the stator 

current of a three-phase electric motor in the 

transient mode (starting mode).

The speed increases from zero to the near-

synchronous region (3000 rpm) in approximately 

0.3-0.4 s with a slight overshoot and subsequent 

settling. This corresponds to the acceleration of an 

asynchronous motor as the voltage increases. 

Stator currents i and i have the largest 

amplitude during start-up (typical starting 

current), after which they decrease in steady state, 

and with step changes in load, corresponding 

changes in amplitude are visible. On the moment 

graph, the electromagnetic moment eT

qualitatively fulfills the specified profile LoadT . 

At each load jump, a transient process with short-

term peaks/oscillations occurs, after which eT

coincides with the load level in the steady state. 

After a load decrease of about 1.4 s, a decline and 
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a short transient process 
eT are observed, which 

is also expected.

Fig. 7. Dependence of the change in the 

electromagnetic torque of a three-phase 

electric motor in the transient mode (starting 

mode) in the mode of step change in load.

The next step was to split the sample. The 

training part contains 2000 samples (0–1.0 s), the 

test part contains 2001 samples (1.0–2.0 s). Since 

the sampling step is 0.0005 s, 2000 points 

correspond to exactly 1 second of data, and the 

test part retains the same sampling frequency and 

full dimensionality consistency between the states 

X, the inputs U, and the derivatives X . This 

division ensures that the model is trained on the 

transient acceleration mode and the first part of 

the load response, and tested on the following 

modes after 1.0 s, where other operating areas and 

load changes are present. This is important for 

assessing the generalization ability of SINDYc: 

the model will not simply repeat the trajectory 

from training, but must reproduce the dynamics 

on the time interval that was not used in the fitting.

Next, normalization was performed. After 

scaling, the dimensions of the arrays did not 

change: the full set has 4001 counts for the states 
54001xRX  , inputs

34001xRX  and derivatives 
54001xRX  . Similarly, 2000 samples were 

stored for the training part, and 2001 for the test 

part.

In the test validation of the identified SINDYc 

model, a stable numerical simulation was 

obtained over the entire test interval (all 

trajectories are finite, without divergence), which 

indicates the suitability of the found system of 

equations as a predictive approximation of 

dynamics. The reproduction errors are estimated 

via RMSE both in the normalized state space and 

after returning to physical units. In the normalized 

form, the error for the stator currents is about 

0.079 for i and i , for the rotor flux linkages

about 0.037 for  ,r and  ,r , and for the 

mechanical angular velocity 0.0247, which 

indicates the best agreement for the mechanical 

channel and the rotor compared to the current 

channels. In physical units, the RMSE is 

approximately 0.81 A for i and i , about 0.0197 

Wb for  ,r and  ,r , and 3.09 rad/s for 
m , 

which is equivalent to approximately 30 rpm. 

Thus, the model most accurately reproduces the 

speed and rotor fluxes, while the error for currents 

is larger, which is typical for derivative-based 

identification and can be attributed to the high-

frequency component of the signals and the 

sensitivity of RMSE to phase shifts in the 

oscillatory components.

After automatic detection of load change 

moments, the test section was divided into two 

time segments: the first from t=1.0 s to t≈1.399 s 

(800 counts), the second from t=1.4 s to t=2.0 s 

(1201 counts). This division corresponds to the 

jump point of the load moment control signal, i.e., 

the change in the operating mode of the electric 

drive. The estimation of the model error 

separately for each segment showed the expected 

degradation of accuracy after the load jump. In 

segment 0, the average normalized RMSE for all 

states is 0.039, with the smallest errors observed 

for the mechanical speed m (0.0216) and the 

rotor flux linkages  ,r and  ,r (0.027), while 

for the currents i and i the error is about 0.06. 

In segment 1, the average normalized RMSE 

increases to 0.058, and the errors for the currents 

increase to 0.0893, for the flux linkages to 0.0423, 

and for the speed to 0.0265.

The results of the sparsity sweep of the 

SINDYc model showed that in the studied range 

of STLSQ thresholds, the accuracy on the test 

sample almost does not change, while the number 

of active terms in the equations changes 

moderately. For most threshold values in the 

interval 0.01–0.50, almost the same average error 

level was obtained: 0.047808, while the model 

contains about 225 non-zero terms. This means 

that in this range, regularization is not a limiting 

factor: the structure of the feature library and the 

data lead to almost the same solution, and 

changing the threshold does not affect the 

consistency of the model with the test dynamics. 

Increasing the threshold to 0.80 gave the lowest 
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average error among the tested options 

(0.047772) at 223 terms. At the same time, further 

increasing the sparsity to 1.20 reduced the model 

complexity to 216 terms, but led to a slight 

deterioration in accuracy (0.047843). The 

difference in error between these models is very 

small (on the order of 10-4), indicating actual 

equivalence in accuracy at different levels of 

complexity.

According to the results of sparsity selection, 

the final model was selected according to the rule 

almost the best accuracy + minimum complexity. 

Then, an allowable deterioration in accuracy of 

3% was set, so the threshold value was 

0.0492048. Among all the models that fell into 

this quality corridor, the option with the smallest 

number of active members was selected: 

threshold 1.2, 216 non-zero terms, while the 

average error remained practically at the optimum 

level. This means that a small fee in accuracy 

(compared to the absolute minimum) is 

compensated by a noticeably simpler structure of 

the equations, which increases interpretability and 

reduces the risk of overtraining without losing the 

adequacy of reproducing the test dynamics.

In the test interval (t = 1.0–2.0 s), the final 

SINDYc model after selection according to the 

criterion 3% of the best RMSE + minimum terms 

(threshold 1.2, 216 active members) demonstrate

stable reproduction of the dynamics of all five 

states in the normalized space and in physical 

units. According to the integral error estimate, the 

RMSE (normalized) for the currents i and i

was obtained at the level of 0.0734, for the rotor 

flux linkages  ,r and  ,r about 0.0343, and 

for the mechanical angular velocity 
m 0.0237. 

In physical units, this corresponds to RMSE 0.754

A for each current component, 0.01827 (in your 

units for flux linkage used in the model) for the 

rotor flux linkage components, and 2.97 rad/s for 

m . This distribution of errors is expected: the 

speed as a slow state is reproduced more 

accurately, while the currents are more sensitive 

to non-smooth load changes and contain a 

pronounced oscillatory component at the supply 

frequency.

Fig. 8. Dependence of the change in the stator 

current of a three-phase electric motor in the 

transient mode (starting mode) in the α

coordinates.

Fig. 9. Dependence of the change in the stator 

current of a three-phase electric motor in the 

transient mode (starting mode) in the β

coordinates.

Fig. 10. Dependence of the change in the value 

of the flux linkage of the rotor of a three-

phase electric motor in the transient mode 

(starting mode) in the α coordinates.
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Fig. 11. Dependence of the change in the value 

of the flux linkage of the rotor of a three-

phase electric motor in the transient mode 

(starting mode) in the β coordinates.

Fig. 12. Dependence of the change in the 

angular frequency of the rotor of a three-

phase electric motor in the transient mode 

(starting mode).

Figure 8-12, сomparison on the test interval 

shows that the SINDYc model well reproduces 

the phase and amplitude of fast vibration 

components for ,,,, ,,   rrii and adequately 

reproduces the response to a change in load at a 

time of about t = 1.4 s. The most noticeable 

systematic discrepancy is manifested precisely in 

the speed: after a load jump, SINDYc reproduces 

the correct transient behavior (overshoot and 

damping), but exhibits a shift of the steady-state 

level m relative to the measured trajectory. This 

behavior is consistent with the fact that the 

mechanical channel is integrating and sensitive to 

small errors in the reproduction of torque and 

losses (friction/load); even a small error in the 

model of the interconnection of currents and flux 

linkages leads to the accumulation of a difference 

in speed, so it is
m that is often the most 

demanding variable for data-driven identification.

CONCLUSIONS

The article studies the dynamic behavior of 

induction motors and estimates key 

electromechanical parameters using the SINDYc 

method in conditions where only the results of no-

load and short-circuit tests and a dataset with 

reference data of various three-phase induction 

motors of the AIR series are available.

The work obtained the parameters of the 

equivalent circuit from no-load and short-circuit, 

which became the basis for building mechanical 

and electrical models of the motor. The dynamics 

of signals (currents, voltages, torque, unbalanced 

magnetic force) was calculated based on the 

mechanical model of rotor acceleration and 

electrical variables agreed with it. The SINDYc 

model was built and trained. During the 

verification of the validity of the identified 

SINDYc model, a stable numerical simulation 

was obtained over the entire test interval (all 

trajectories are finite, without divergence), which 

indicates the suitability of the found system of 

equations as a predictive approximation of 

dynamics. Reproduction errors are estimated with 

the help of RMSE both in the normalized state 

space and after returning to physical units. In the 

normalized form, the error for the stator currents 

is about 0.079, for the flux-coupled rotor about 

0.037, and for the mechanical angular velocity 

0.0247, which indicates the best correspondence 

for the mechanical channel and the rotor 

compared to the current channels. The results of 

the analysis of the sparseness of the SINDYc 

model showed that in the studied range of STLSQ 

threshold values, the accuracy on the test sample 

practically does not change, while the number of 

active terms in the equations changes moderately. 

For most of the threshold values in the interval 

0.01–0.5, an almost identical average error level 

was obtained: 0.047808, while the model contains 

about 225 non-zero terms. An assessment of the 

change in the stator current and the value of the 

rotor flux linkage of a three-phase electric motor 

in the transient mode (starting mode) in the 

coordinates α and β was carried out. As a result of 

the conducted research, it was found that the 

SINDYc method is advisable to use for predicting 

key electromechanical parameters of electric 

motors in the absence of information on the nature 

of power loads, which is typical for mixing 
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systems in biogas plants and other technological 

processes.
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