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Abstract. Operational forecasting of wind turbine power output is a critical task for power systems with 

a high share of renewable energy sources, as the accuracy of short-horizon power estimation directly 

affects system stability, the demand for balancing resources, and overall economic performance. A sig-

nificant challenge in developing models based is the presence of anomalies, measurement distortions, 

and pronounced heterogeneity of wind turbine operating regimes, which degrades the performance of 

unified forecasting approaches. The objective of this study is to develop and analyze an approach to 

operational wind turbine power forecasting based with explicit consideration of anomalies and operating 

regimes. A two-stage method is proposed, including anomaly detection and clustering using density-

based algorithms, followed by the construction of separate regression models for the identified clusters, 

which enables accounting for operational heterogeneity and can reduce forecasting errors in specific 

operating regimes. The key result is the demonstrated dependence of the effectiveness of cluster-ori-

ented modeling on the expressive capacity of the underlying regression model. For models with limited 

flexibility, accounting for operating regimes leads to a substantial reduction in typical prediction error 

under high-power operating conditions, whereas for highly expressive models a unified approach pro-

vides comparable or superior performance. The practical relevance of the proposed approach lies in its 

applicability to operational wind power forecasting assuming the availability of short-horizon wind 

speed forecasts, as well as in supporting data quality assessment and analysis of wind turbine operating 

regimes, thereby improving the reliability and efficiency of wind energy system operation.
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Prognoza operațională a generării de energie electrică a turbinelor eoliene utilizând clusteringul și 

detectarea anomaliilor 
1Matrenin P.V., 2Hamitov R.N.

1Universitatea Federală Urală, Ekaterinburg, Federația Rusă 
2Universitatea Industrială din Tyumen, Tyumen, Federația Rusă

Rezumat. Prognoza operațională a puterii turbinelor eoliene este o sarcină critică pentru sistemele energetice cu o 

pondere mare de surse regenerabile de energie, deoarece precizia estimării puterii pe orizont scurt afectează direct 

stabilitatea sistemului, cererea de resurse de echilibrare și performanța economică generală. O provocare 

semnificativă în dezvoltarea de modele bazate pe aceasta este prezența anomaliilor, a distorsiunilor de măsurare și 

a eterogenității pronunțate a regimurilor de funcționare a turbinelor eoliene, ceea ce degradează performanța 

abordărilor unificate de prognoză. Obiectivul acestui studiu este de a dezvolta și analiza o abordare a prognozei 

puterii operaționale a turbinelor eoliene bazată pe luarea în considerare explicită a anomaliilor și a regimurilor de 

funcționare. Se propune o metodă în două etape, inclusiv detectarea anomaliilor și gruparea în clustere folosind 

algoritmi bazați pe densitate, urmată de construirea unor modele de regresie separate pentru clusterele identificate, 

ceea ce permite luarea în considerare a eterogenității operaționale și poate reduce erorile de prognoză în regimuri 

de funcționare specifice. Rezultatul cheie este dependența demonstrată a eficacității modelării orientate pe clustere 

de capacitatea expresivă a modelului de regresie subiacent. Pentru modelele cu flexibilitate limitată, luarea în 

considerare a regimurilor de funcționare duce la o reducere substanțială a erorii tipice de predicție în condiții de 

funcționare de putere mare, în timp ce pentru modelele extrem de expresive, o abordare unificată oferă performanțe 

comparabile sau superioare. Relevanța practică a abordării propuse constă în aplicabilitatea sa la prognoza 

operațională a energiei eoliene, presupunând disponibilitatea prognozelor pe orizont scurt ale vitezei vântului, 
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precum și în susținerea evaluării calității datelor și a analizei regimurilor de funcționare ale turbinelor eoliene, 

îmbunătățind astfel fiabilitatea și eficiența funcționării sistemului de energie eoliană.

Cuvinte-cheie: turbină eoliană; prognoză energetică; prognoză pe termen scurt; date SCADA; grupare; DBSCAN;

ansambluri de arbori decizionali; detectarea anomaliilor.
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Аннотация. Оперативное прогнозирование выработки ветроэнергетических установок является важной 

задачей для электроэнергетических систем с высокой долей возобновляемых источников энергии, по-

скольку точность оценки мощности на оперативном горизонте непосредственно влияет на устойчивость 

энергосистемы, потребность в балансирующих ресурсах и экономические показатели эксплуатации. Важ-

ной задачей при построении прогнозных моделей является наличие в данных выбросов, искажений изме-

рений и выраженная неоднородность режимов работы ветроустановок. Целью настоящего исследования 

является разработка и анализ подхода к оперативному прогнозированию выработки ветроэнергетических 

установок по с учетом выбросов и эксплуатационных режимов работы оборудования. В работе предложен 

двухэтапный метод, включающий детектирование выбросов и кластеризацию эксплуатационных состоя-

ний на основе плотностных алгоритмов, а также построение отдельных регрессионных моделей для выде-

ленных кластеров режимов, что позволяет учитывать неоднородность эксплуатации и снижать ошибку 

прогнозирования в отдельных режимах работы ветроустановки. Наиболее значимым результатом иссле-

дования является установленная зависимость эффективности кластер-ориентированного моделирования 

от аппроксимирующей способности используемой модели. Установлено, что для моделей с ограниченной 

обобщающей способностью учет режимов работы позволяет существенно снизить типичную ошибку про-

гноза в режимах высокой мощности, тогда как для моделей с высокой обобщающей способностью единая 

модель демонстрирует сопоставимое или лучшее качество по интегральным метрикам. Дополнительно 

показано, что кластеризация эксплуатационных режимов может использоваться для автоматического вы-

явления выбросов и нештатных состояний. Практическая значимость работы заключается в возможности 

применения предложенного подхода для оперативного прогнозирования выработки ветроустановок при 

наличии прогноза метеорологических параметров на малом горизонте, а также для анализа качества дан-

ных и режимов эксплуатации оборудования, что повышает надежность и эффективность управления вет-

роэнергетическими объектами.

Ключевые слова: ветроэнергетическая установка, ветроэлектрическая станция, прогнозирование генера-

ции, кластеризация, DBSCAN, детектирование выбросов.

ВВЕДЕНИЕ

Прогнозирование генерации ветроэлектри-

ческих станций (ВЭС) является важной зада-

чей для электроэнергетических систем с высо-

кой долей возобновляемых источников энер-

гии (ВИЭ) из-за сложности учета стохастиче-

ской генерации в режимно-балансовых расче-

тах [1–3]. Теоретическая кривая мощности 

ветроэнергетической установки (ВЭУ) пред-

ставляет собой модельную зависимость вы-

ходной мощности ВЭУ от скорости ветра при 

стандартных условиях. Однако данная кривая 

не учитывает турбулентность, инерционные 

факторы, орографию, деградацию оборудова-

ния и алгоритмы управления ВЭУ, вследствие 

чего прогнозы на ее основе могут содержать 

систематические ошибки [4, 5].

В этой связи наблюдается перенос внима-

ния исследователей с прогнозирования скоро-

сти и направления ветра на прогнозирование 

выработки ВЭУ и ВЭС, что позволяет адапти-

ровать модель к фактическому поведению 

конкретной установки в конкретных условиях 

эксплуатации [6, 7].

В настоящей работе предполагается, что на 

оперативном горизонте прогноз скорости 

ветра доступен с приемлемой точностью, и за-

дача прогнозирования выработки ВЭУ сво-

дится к моделированию зависимости выход-

ной мощности от текущего или прогнозируе-

мого состояния.

Качество данных является ключевым уз-

ким местом [8, 9]. Реальные массивы содержат 

выбросы и ошибочные записи, возникающие 

из-за отказов датчиков, сбоев связи, обледене-

ния, оперативных ограничений выработки и 

иных факторов. Если такие аномалии не 

устранять до обучения прогнозной модели, 

они снижают точность прогноза, что показано 

в ряде исследований [10–12].
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Среди методов автоматической очистки 

данных особое место занимает алгоритм 

DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise). DBSCAN выделяет 

плотные области, соответствующие типич-

ному режиму работы ВЭУ, и определяет раз-

реженные изолированные точки как шум (вы-

бросы), не предполагая заранее форму кривой 

мощности [8–10].

Помимо DBSCAN применяются и другие 

алгоритмы кластеризации, чаще всего k-сред-

них, а также гибридные методы [10, 13, 14]. 

Кластеризация используется не только для 

очистки данных, но и для сегментации режи-

мов работы ВЭУ с последующим обучением 

прогнозных моделей. Вместо одной глобаль-

ной модели данные делятся на более однород-

ные группы (по условиям ветра, состоянию 

турбины, погодным сценариям), и для каждой 

группы обучается отдельная модель, что поз-

воляет точнее отразить нелинейные и нестаци-

онарные зависимости при условии адекват-

ного выбора модели и достаточной однород-

ности выделенных кластеров

В работе [14] кластеризация выполняется 

на уровне отдельных ВЭУ, то есть кластером 

является множество установок. В исследова-

нии [15] рассматриваются кластеры дней, схо-

жих по метеорологическим условиям, для 

формирования отдельных прогнозных моде-

лей; аналогичный подход представлен в статье 

[16], где также использован алгоритм k-сред-

них. В работе [17] предложено использование 

как метеорологических условий, так и значе-

ний выработки для кластеризации, с примене-

нием обратной ковариационной матрицы Теп-

лица для поиска схожих фрагментов времен-

ных рядов.

Еще одним направлением применения кла-

стеризации в рассматриваемой задаче явля-

ется восстановление пропущенных значений 

метеорологических условий и данных 

ВЭС [18].

Заметный прогресс демонстрируют ги-

бридные физико-статистические модели, сов-

мещающие детерминированные математиче-

ские модели ВЭУ с гибкостью моделей ма-

шинного обучения. Включение в вектор при-

знаков теоретической мощности, рассчитан-

ной по кривой зависимости выработки от ско-

рости ветра, позволяет повысить точность 

прогноза генерации [4, 7, 18–20].

Другим принципиальным аспектом опера-

тивного и краткосрочного прогноза выработки 

ВЭУ является учет инерционности ветряной 

турбины. Поскольку отклик мощности не 

мгновенен, информативным признаком оказы-

вается «предыдущая мощность» (мощность на 

предыдущем шаге, например за 10 минут до 

текущего момента) [21–25].

В данной статье в задачу оперативного про-

гнозирования мощности ВЭУ внесен следую-

щий вклад:

• предложено использование кластери-

зации на уровне отдельных записей набора 

данных, а не более крупных интервалов, как в 

аналогичных исследованиях;

• на основе DBSCAN разработан алго-

ритм одновременной кластеризации для при-

менения нескольких отдельных прогнозных 

моделей и детектирования выбросов для по-

вышения робастности моделей;

• исследовано влияние на точность про-

гнозирования выработки ВЭУ расширенного

пространства признаков, включающего в себя 

расчетное значение мощности, а также преды-

дущие измеренные значения выходной мощ-

ности ВЭУ для учета инерции;

• исследованы условия применимости 

кластер-ориентированного подхода к прогно-

зированию выработки ВЭУ и показана зависи-

мость эффективности кластеризации от ап-

проксимирующей способности используемой 

модели.

I. МЕТОДЫ ИССЛЕДОВАНИЯ

Для решения задачи оперативного прогно-

зирования выработки ветроэнергетических 

установок в работе предложен метод, включа-

ющий следующие этапы:

1) формирование и преобразование вектора 

признаков;

2) детектирование выбросов в данных с ис-

пользованием плотностного алгоритма кла-

стеризации DBSCAN;

3) кластеризация эксплуатационных режи-

мов работы ВЭУ на очищенных данных;

4) построение и сравнение прогнозных мо-

делей для различных режимов работы и еди-

ной модели без учета кластеризации;

5) оценка качества моделей с использова-

нием интегральных и условных метрик.

A. Формирование и преобразование 

признаков

Вектор используемых признаков включает:

текущую скорость ветра (м/с); синус и коси-

нус направления ветра; синус и косинус часа 

суток; синус и косинус номера месяца; теоре-
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тическую (расчетную) мощность ВЭУ при те-

кущей скорости ветра (кВт); предыдущее из-

меренное значение выходной мощности ВЭУ; 

разность расчетной и измеренной мощностей 

ВЭУ.

Применение тригонометрических преобра-

зований позволяет корректно учитывать цик-

лическую природу направления ветра и вре-

менных признаков.

Использование расчетной мощности, опре-

деляемой по теоретической кривой, позволяет 

включить в модель физическую информацию 

о поведении установки, а использование 

предыдущего значения мощности – учесть 

инерционность ветряной турбины и запазды-

вание отклика на изменение скорости ветра.

Принципиально важным элементом ис-

пользуемого пространства признаков является 

включение признака, отражающего согласо-

ванность между расчетной и фактической вы-

работкой ВЭУ. Существенное расхождение 

между расчетной и измеренной мощностью в 

большинстве случаев свидетельствует не о 

штатном режиме работы установки, а о нали-

чии технологических ограничений, нештат-

ных состояний или ошибок измерений. Ис-

пользование данного признака позволяет ал-

горитмам плотностной кластеризации эффек-

тивно отделять физически допустимые ре-

жимы работы от аномальных наблюдений без 

введения жестких пороговых критериев.

Численные признаки подвергаются стан-

дартизации по формуле

( )
' ,

( )

F mean F
F

std F

−
=

где F – вектор значений признака в наборе 

данных, mean – функция вычисления среднего 

значения, std – функция вычисления 

среднеквадратического отклонения.

B. Детектирование выбросов на основе 

DBSCAN

На первом этапе обработки данных приме-

няется алгоритм DBSCAN для выявления вы-

бросов и аномальных записей в данных. Алго-

ритм используется исключительно для 

очистки данных и не применяется для сегмен-

тации режимов прогнозирования.

Множество записей (точек в терминах кла-

стеризации) X = {x₁, …, xₙ} рассматривается в 

пространстве признаков, и для каждой точки xᵢ

определяется ε-окрестность

( ) { | ( , ) }.i i i jN x x X d x x=   

Если Nε(xi) ≥ minPts, то точка xi относится к 

плотной области данных; точки, не 

принадлежащие ни одной плотной области, 

рассматриваются как выбросы. Такой подход 

позволяет автоматически выявлять 

ошибочные измерения, связанные с отказами 

датчиков, ограничениями выработки и иными 

нештатными ситуациями, без задания 

априорной формы зависимости мощности от 

скорости ветра.

Параметры DBSCAN выбираются на 

основе анализа плотностной структуры 

данных. Значение minPts задается с учетом 

размерности пространства признаков и объема 

выборки, а параметр ε определялся по k-

distance графику как характерный масштаб 

плотных областей данных.

Записи, идентифицированные как выбросы, 

исключаются из дальнейшего анализа и обуче-

ния прогнозных моделей.

C. Кластеризация эксплуатационных 

режимов

После удаления выбросов выполняется 

кластеризация эксплуатационных режимов 

работы ВЭУ на очищенном наборе данных с 

использованием алгоритма HDBSCAN 

(Hierarchical DBSCAN) [26]. В отличие от 

DBSCAN, применяемого на предыдущем 

этапе для детектирования выбросов, 

HDBSCAN позволяет выявлять устойчивые 

плотностные структуры в данных без предва-

рительного задания масштаба кластеризации и 

автоматически определять число кластеров.

Кластеризация проводится на уровне от-

дельных записей данных в пространстве при-

знаков, сформированном на первом этапе, без 

использования отклонения от теоретической 

кривой мощности, что позволяет интерпрети-

ровать полученные кластеры как различные 

эксплуатационные режимы работы ветроуста-

новки. Записи, не отнесенные HDBSCAN r

кластерам, рассматриваются как переходные 

состояния между режимами.

В рамках исследования предполагается, 

что кластеризация эксплуатационных режи-

мов выполняется на накопленном массиве 

данных за полный год эксплуатации, после 

чего полученные метки режимов фиксиру-

ются и используются на этапе обучения и 

сравнения прогнозных моделей.
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D. Построение прогнозных моделей

Для оценки влияния учета эксплуатацион-

ных режимов рассматриваются два варианта 

моделирования:

• единая модель, обучаемая на всем очи-

щенном наборе данных без учета кластериза-

ции;

• кластер-ориентированный подход, при 

котором для каждого выделенного эксплуата-

ционного режима обучается отдельная регрес-

сионная модель.

В качестве базовых регрессионных моде-

лей исследуются различные классы алгорит-

мов. Если для некоторого режима объем обу-

чающей выборки оказывается недостаточным, 

применяется единая модель.

E. Оценка качества моделей

Оценка качества прогнозирования прово-

дится с использованием сгруппированной 

кросс-валидации по суткам, при которой все 

записи, относящиеся к одному календарному 

дню, целиком попадают либо в обучающую, 

либо в тестовую выборку. Такой подход сни-

жает влияние автокорреляции временных ря-

дов и соответствует сценарию оперативного 

применения модели при наличии прогноза ме-

теорологических параметров.

Качество моделей оценивается с использо-

ванием общепринятых интегральных метрик 

(RMSE, MAE, R2).

II. РЕЗУЛЬТАТЫ

В данном разделе анализируется, в каких 

условиях учет эксплуатационных режимов и 

предварительная плотностная очистка данных 

действительно улучшают качество оператив-

ного прогнозирования выработки ВЭУ.

В исследовании использованы измерения 

системы сбора данных реальной ветроэнерге-

тической установки из открытого источ-

ника [27]. Шаг дискретизации данных состав-

ляет 10 минут, и данные содержат 50 530 из-

мерений за период с 1 января 2018 г. 00:00 до 

31 декабря 2018 г. 23:50 (количество пропу-

щенных значений составляет 3,86 %).

A. Детектирование выбросов и профили 

аномалий

Применение алгоритма DBSCAN выявило 

несколько устойчивых типов аномальных 

наблюдений, что позволяет рассматривать 

плотностную структуру данных как информа-

тивный источник для автоматической иденти-

фикации нештатных режимов работы ветро-

установки.

Агрегированные профили аномалий (Таб-

лица 1) позволяют выделить типовые сцена-

рии несогласованности между расчетной и 

фактической выработкой, что упрощает ин-

терпретацию природы выявленных выбросов 

и их связь с эксплуатационными и измери-

тельными факторами.

Использованы следующие обозначения: 

Vmed – медианная скорость ветра, Tmed – меди-

анная расчетная мощность ВЭУ, Pmed – меди-

анная фактическая мощность ВЭУ, ΔPmed – от-

клонение фактической скорости от расчетной.

Таблица 1

Профили выделенных аномалий

Table 1

Profiles of anomalies detected
ID Доля

Frac-

tion, %

Vmed, 

м/с,

m/s

Tmed, 

кВт,

kW

Pmed, 

кВт,

kW

ΔPmed, 

кВт,

kW

A-1 2.72 9.74 2622 84 −1053

A1 0.21 10.53 3078 0 −3031

A2 0.12 14.44 3600 0 −3600

A3 0.06 12.66 3588 358 −3213

A4 0.09 13.64 3600 0 −3600

A5 0.06 12.82 3600 0 −3600

Как видно из Рисунка 1, аномальные 

наблюдения формируют разреженные области 

в пространстве признаков, пространственно 

отделенные от основной плотностной струк-

туры данных (для отображения данных на 

плоскости применен алгоритм UMAP [28]). 

Рисунок 2 показывает примеры выявлен-

ных аномалий.

Основная плотностная структура данных 

(A0) соответствует физически корректным ре-

жимам работы ветроустановки, тогда как ма-

лые плотностные группы (A1–A5) отражают 

типовые аномальные состояния, характеризу-

ющиеся существенным расхождением между 

расчетной и фактической мощностью.

Сравнение UMAP-визуализаций (Рису-

нок 1) показывает, что включение признака 

ΔP обеспечивает явное пространственное от-

деление аномальных наблюдений, тогда как 

его исключение приводит к формированию 

устойчивых кластеров эксплуатационных ре-

жимов. Это подтверждает ключевую роль фи-

зически осмысленного признака ΔP для детек-

тирования выбросов и обосновывает раздель-

ное использование пространств признаков для 

очистки данных и анализа режимов.
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Анализ профилей выбросов показывает, 

что аномальные наблюдения в основном свя-

заны с существенным расхождением между 

расчетной и фактической мощностью при фи-

зически допустимых значениях скорости 

ветра. Такие ситуации могут быть интерпрети-

рованы как следствие технологических огра-

ничений выработки, нештатных режимов 

управления или ошибок измерений.

a) b)
Рис. 1. Визуализация профилей аномалий в пониженном пространстве признаков, 

а) при использовании ΔP, b) без использования ΔP.

Fig. 1. Visualization of anomaly profiles in reduced feature space

а) with ΔP, b) without ΔP.

Рис. 2. Примеры выявленных аномалий (P – измеренная мощность, Т – расчетная).

Fig. 2. Examples of detected anomalies (P is measured power, T is calculated one).
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Ключевым фактором, определяющим при-

надлежность наблюдений к аномальным, яв-

ляется несогласованность между расчетной и 

измеренной мощностью, что подтверждает 

информативность физически обоснованного 

признака ΔP для автоматического детектиро-

вания выбросов.

Во всех выделенных профилях выбросов 

наблюдается существенное отклонение изме-

ренной мощности от значения, ожидаемого на 

основе теоретической кривой мощности при 

заданной скорости ветра. Это подтверждает, 

что включение расчетной мощности в про-

странство признаков позволяет использовать 

физические соотношения в качестве неявного 

критерия корректности данных и существенно 

повышает информативность процедуры детек-

тирования выбросов. Как показано в Таблице

1, для всех профилей выбросов характерны 

значительные отклонения между расчетной и 

измеренной мощностью при физически допу-

стимых значениях скорости ветра.

Полученные результаты подчеркивают, 

что эффективность автоматического детекти-

рования выбросов в данных существенно за-

висит от учета физической природы процесса, 

а не только от выбора алгоритма машинного 

обучения.

B. Кластеризация эксплуатационных 

режимов ветроустановки

После удаления выбросов кластеризация 

используется как инструмент выявления 

устойчивых эксплуатационных режимов, от-

ражающих различные физические состояния 

работы ветроустановки. Для выявления устой-

чивых режимов эксплуатации применялся ал-

горитм HDBSCAN, позволяющий автоматиче-

ски определять число кластеров и выделять 

плотностные структуры в данных без предва-

рительного задания масштаба кластеризации.

Кластеризация проводилась в пространстве 

признаков, включающем скорость и направле-

ние ветра, временные характеристики и рас-

четную мощность, без использования откло-

нения между расчетной и фактической выра-

боткой, что позволило интерпретировать по-

лученные кластеры именно как режимы экс-

плуатации, а не как проявления аномалий.

В результате применения HDBSCAN в дан-

ных были выявлены несколько устойчивых 

кластеров, соответствующих различным экс-

плуатационным режимам работы ветроуста-

новки, а также группа наблюдений, не принад-

лежащих ни одному устойчивому кластеру. 

Последние интерпретируются как переходные 

состояния между режимами и характеризу-

ются повышенной вариабельностью парамет-

ров. Для наглядной интерпретации структуры 

данных на Рисунке 3 представлена визуализа-

ция результатов кластеризации в пониженном 

пространстве признаков, полученном методом 

UMAP. Видно, что основные режимы эксплу-

атации формируют компактные и хорошо раз-

личимые плотностные области, тогда как пе-

реходные состояния располагаются между 

ними и не образуют самостоятельных класте-

ров. Для каждого режима были рассчитаны аг-

регированные профили, включающие типич-

ные значения скорости ветра, расчетной и 

фактической мощности, а также характерные 

временные интервалы. Результаты анализа 

профилей режимов приведены в Таблице 2.

Рис. 3. Визуализация кластеров HDBSCAN.

Fig. 3. Visualization HDBSCAN clusters.

Таблица 2

Режимы работы, определенные HDBSCAN

Table 2

Operating modes defined by HDBSCAN

ID
Доля

Fraction, %

Vmed, м/с,

m/s

Pmed, кВт,

kW

R-1 29.52 7.24 841.35

R0 62.04 6.35 633.36

R1 8.44 13.62 3531.75

Выявленные режимы: R-1 – переходные со-

стояния между устойчивыми режимами; R0 –

номинальный режим при умеренной нагрузке;

R1 – режим высокой выработки ВЭУ.

Выделенные режимы обладают выражен-

ной физической интерпретацией и отражают 

как типичную эксплуатацию ветроустановки, 
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так и условия повышенной нагрузки, имею-

щие наибольшее значение для задач оператив-

ного прогнозирования.

Важно подчеркнуть, что кластеризация

эксплуатационных режимов выполняется на 

накопленном массиве данных за полный год 

эксплуатации и результаты кластеризации 

фиксируются перед этапом построения про-

гнозных моделей.

Режим R1 характеризуется высокими зна-

чениями скорости ветра и выработки и соот-

ветствует условиям повышенной нагрузки, 

имеющим наибольшую практическую значи-

мость для задач оперативного прогнозирова-

ния. В этом режиме наблюдается повышенная 

вариабельность мощности, что отражает влия-

ние инерционных и управляющих факторов на 

отклик ветроустановки.

Выявленные эксплуатационные режимы 

используются далее для построения и сравне-

ния прогнозных моделей, обучаемых отдельно 

для каждого режима и на всем массиве данных 

без учета кластеризации

C. Анализ влияния кластеризации на 

точность моделей

Сравнение результатов (Таблица 3, Рису-

нок 4) показывает, что влияние кластеризации 

на качество прогнозирования существенно 

различается для моделей с разной аппрокси-

мирующей способностью. 

Таблица 3

Показатели точности различных моделей при использовании единой модели 

и при построении моделей для каждого кластера (среднее значение + СКО)

Table 3

Accuracy indicators of different models when using a single model and 

when constructing models for each cluster (mead + std)

Модель

Model

Подход

Approach

RMSE,

кВт

MAE,

кВт

R²

PL Одна модель 106.8 ± 7.4 70.0 ± 7.7 0.993 ± 0.001

PL Кластеризация 103.9 ± 2.6 66.2 ± 2.7 0.994 ± 0.001

SVR Одна модель 90.8 ± 6.0 52.4 ± 3.6 0.995 ± 0.000

SVR Кластеризация 89.1 ± 4.8 51.3 ± 3.3 0.995 ± 0.000

MLP Одна модель 96.9 ± 7.5 61.3 ± 5.2 0.994 ± 0.001

MLP Кластеризация 117.6 ± 10.0 74.7 ± 2.1 0.993 ± 0.001

XGBoost Одна модель 86.5 ± 7.6 49.9 ± 3.8 0.995 ± 0.000

XGBoost Кластеризация 86.3 ± 7.1 50.2 ± 2.5 0.995 ± 0.000

LightGBM Одна модель 83.3 ± 8.3 46.3 ± 2.8 0.996 ± 0.000

LightGBM Кластеризация 86.2 ± 7.3 48.9 ± 3.5 0.995 ± 0.000

CatBoost Одна модель 80.6 ± 6.6 47.4 ± 2.6 0.996 ± 0.000

CatBoost Кластеризация 84.5 ± 9.1 50.0 ± 3.1 0.995 ± 0.000

Были использованы следующие модели: 

полиномиальная регрессия (PL); метод опор-

ных векторов (SVR); многослойный перцеп-

трон (MLP); экстремальный градиентный бу-

стинг (XGBoost); быстрый бустинг 

(LightGBM); категориальный бустнг 

(CatBoost).

Оценка проводилась с использованием 

сгруппированной кросс-валидации по суткам.

Для каждой модели использовался подбор ги-

перпараметров методом случайного поиска.

Учет эксплуатационных режимов приво-

дит к снижению интегральной ошибки про-

гнозирования для полиномиальной регрессии 

и в меньшей степени для метода опорных век-

торов. 

Для нейронных сетей и ансамблей деревьев 

решений единая модель демонстрирует сопо-

ставимое или более низкое значение инте-

гральных метрик по сравнению с кластер-ори-

ентированным подходом.

Средние по всем режимам эксплуатации не 

отражают особенности поведения моделей в 

наиболее важных условиях работы ВУЭ. 

В связи с этим далее проводится анализ ка-

чества прогнозирования в режиме высокой 

вырабатываемой мощности (R1).
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Рис. 4. Результаты единой модели и модели с 

кластеризацией по различным классам алго-

ритмов.

Fig. 4. Results for the unified model and the clus-

tering-based model across different algorithm clas-

ses.

D. Анализ режима высокой вырабатываемой 

мощности

Анализ режима высокой выработки R1 по-

казывает (Таблица 4, Рисунок 5), что кластер-

ориентированный подход особенно эффекти-

вен для моделей с ограниченной гибкостью, 

для которых учет режимов позволяет суще-

ственно снизить типичную ошибку прогнози-

рования в наиболее критических условиях экс-

плуатации. Для метода опорных векторов и 

CatBoost наблюдается преимущественное сни-

жение MAE при сопоставимых или более вы-

соких значениях RMSE.

Таблица 4

Результаты для режима

высокой выработки ВЭУ

Table 4

Results for the high-output mode 

of the wind turbine

Модель

Model

Подход

Approach

RMSE,

кВт

MAE,

кВт

PL Одна модель

One model

97.9 ± 9.3 75.7 ± 8.3

PL Кластеризация

Clasterization

74.8 ± 15.8 53.1 ± 7.1

SVR Одна модель

One model

79.8 ± 8.8 53.6 ± 7.6

SVR Кластеризация

Clasterization

83.1 ± 14.6 49.5 ± 9.9

CatBoost Одна модель

One model

70.5 ± 12.4 43.5 ± 9.0

CatBoost Кластеризация

Clasterization

72.4 ± 12.8 41.3 ± 9.6

Рис. 5. Результаты для режима 

высокой выработки.

Fig. 5. Results for the high-output mode.

III. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты позволяют по-но-

вому рассмотреть роль кластеризации в зада-

чах оперативного прогнозирования выработки 

ветроэнергетических установок, сместив ак-

цент с универсального улучшения метрик на 

анализ условий ее целесообразности.

Показано, что эффективность кластер-ори-

ентированного подхода существенно зависит 

от аппроксимирующей способности использу-

емой модели и режима эксплуатации ветро-

установки.

В существующих исследованиях, исполь-

зующих кластеризацию для повышения точ-

ности прогнозирования скорости ветра и вы-

работки, не проводится систематический ана-

лиз того, в каких условиях кластеризация дей-

ствительно улучшает прогноз. В настоящей 

работе данный пробел восполняется за счет 

одновременного анализа нескольких классов 

регрессионных моделей и использования как 

интегральных, так и условных метрик каче-

ства.

Принципиальным отличием предложен-

ного подхода является раздельное использова-

ние плотностной кластеризации для решения 

двух различных задач. Алгоритм DBSCAN 

применяется для детектирования выбросов и 

очистки данных, тогда как алгоритм 

HDBSCAN используется для выявления 

устойчивых эксплуатационных режимов.

Дополнительным элементом новизны явля-

ется использование физически обоснованного 

признака согласованности между расчетной и 

фактической мощностью ветроустановки. Ре-

зультаты анализа профилей аномалий показы-

вают, что именно несогласованность между 

расчетной и измеренной мощностью является 
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ключевым фактором, позволяющим автомати-

чески выявлять ошибочные измерения.

Предложенный подход к детектированию 

выбросов на основе плотностной кластериза-

ции обладает рядом преимуществ по сравне-

нию с традиционными методами очистки дан-

ных. В частности, в отличие от ручной экс-

пертной фильтрации, основанной на заранее 

заданных правилах и пороговых значениях, не 

требуется априорное задание или экспертный 

подбор допустимых диапазонов параметров. 

Подход не зависит от субъективных представ-

лений эксперта о «нормальном» режиме ра-

боты ВЭУ. Это особенно важно в условиях

сложных и изменяющихся режимов эксплуа-

тации, когда фиксированные эвристические 

правила оказываются либо избыточно жест-

кими, либо недостаточно чувствительными к 

нетипичным, но физически допустимым со-

стояниям.

По сравнению со статистическими мето-

дами выявления выбросов, основанными на 

анализе распределений отдельных признаков 

и использовании порогов (например, по стан-

дартному отклонению, межквартильному раз-

маху или квантилям), плотностная кластериза-

ция позволяет учитывать многомерную струк-

туру данных и взаимосвязи между признаками. 

Статистические подходы, как правило, тре-

буют подбора пороговых значений для каж-

дого признака либо их комбинаций, что за-

трудняет переносимость метода между раз-

личными ветроустановками и наборами дан-

ных. В противоположность этому, DBSCAN 

адаптируется к локальной плотностной струк-

туре данных и позволяют автоматически вы-

делять аномальные наблюдения как разрежен-

ные области в пространстве признаков, что по-

вышает воспроизводимость процедуры 

очистки данных.

Дополнительно следует подчеркнуть, что 

используемые в работе методы плотностной 

кластеризации не опираются на предположе-

ния о нормальности распределений данных 

или ошибок. Алгоритмы кластеризации ис-

пользуют исключительно геометрическую и 

плотностную структуру выборки. Это обстоя-

тельство является принципиальным преиму-

ществом при анализе данных ВЭУ, которые 

характеризуются выраженной асимметрией 

распределений и наличием выбросов.

Показано, что кластер-ориентированный 

подход не является универсальным средством 

повышения качества модели. Для моделей с 

ограниченной аппроксимирующей способно-

стью, таких как полиномиальная регрессия, 

учет эксплуатационных режимов приводит к 

устойчивому снижению как интегральных, так 

и условных ошибок прогнозирования. Для мо-

делей средней сложности (метод опорных век-

торов) эффект кластеризации проявляется в 

снижении типичной ошибки в режиме высо-

кой мощности, но носит менее устойчивый ха-

рактер. В то же время для таких моделей как 

нейронные сети и ансамбли деревьев решений, 

единая модель демонстрирует сопоставимое 

или лучшее качество по интегральным метри-

кам, что указывает на способность таких алго-

ритмов эффективно учитывать неоднород-

ность данных без явной сегментации.

Особое значение имеет анализ качества 

прогнозирования в режиме высокой мощности, 

который редко рассматривается в существую-

щих публикациях. Показано, что кластер-ори-

ентированный подход может приводить к сни-

жению типичной ошибки в наиболее важном

режиме эксплуатации ВЭУ.

Кроме того, даже в тех случаях, когда учет 

эксплуатационных режимов не приводит к 

улучшению интегральных метрик точности 

прогнозирования, кластеризация данных по-

вышает интерпретируемость модели и резуль-

татов анализа. Выделение устойчивых режи-

мов эксплуатации позволяет связать поведе-

ние модели с физическими состояниями вет-

роустановки, упростить анализ ошибок про-

гнозирования и обеспечить более прозрачное 

объяснение причин расхождений между рас-

четной и фактической выработкой. Таким об-

разом, кластеризация выступает не только как 

инструмент потенциального повышения точ-

ности, но и как средство структурирования 

данных и повышения объяснимости моделей 

машинного обучения, что имеет важное значе-

ние для практического применения прогноз-

ных систем в энергетике.

ЗАКЛЮЧЕНИЕ

В работе рассмотрена задача оперативного 

прогнозирования выработки ветроэнергетиче-

ских установок с учетом неоднородности экс-

плуатационных режимов и наличия выбросов 

в исходных данных. Предложен и эксперимен-

тально исследован подход, основанный на раз-

дельном применении плотностных алгорит-

мов кластеризации для детектирования выбро-

сов и выявления режимов эксплуатации. Пока-

зано, что использование алгоритма DBSCAN в 
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сочетании с физически обоснованным призна-

ком согласованности между расчетной и фак-

тической мощностью позволяет эффективно 

выявлять и интерпретировать выбросы в дан-

ных без введения жестких пороговых крите-

риев. Экспериментальное сравнение различ-

ных классов регрессионных моделей показало, 

что эффективность кластер-ориентированного 

подхода существенно зависит от аппроксими-

рующей способности используемого алго-

ритма. Основным научным результатом ра-

боты является не столько демонстрация спо-

соба повышения точности прогнозирования, 

сколько выявление границ применимости кла-

стер-ориентированных моделей в задачах опе-

ративного прогнозирования выработки ветро-

установок. Полученные результаты показы-

вают, что эффективность учета эксплуатаци-

онных режимов определяется балансом между 

снижением систематического смещения мо-

дели и ростом дисперсии, зависящим от слож-

ности используемого алгоритма. Данный вы-

вод уточняет и дополняет результаты преды-

дущих исследований и может служить осно-

вой для обоснованного выбора архитектуры 

прогнозных моделей.
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