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Annotation. The goal of the work is the development of an algorithm and corresponding software,
which allows the execution of multi-criteria optimization of a control system with PI controller and
FOPDT plant. We use the following seven performance indicators to find the optimal tunings: gain
margin, phase margin, cutoff frequency, critical frequency, relative delay margin, relative overshoot,
maximum control action magnitude. Optimization criteria can include constraints on any number of
indicators. The goal of the work has been achieved by solving the following tasks. The first task is to
create formulas and procedures for accurate calculation of performance indicators of control systems.
The second task is to develop a procedure for the fastest possible simulation of a control system with
the orientation on using a model with internal delays structure and a special solver for it. The third task
is to develop an algorithm for fast calculation of performance indicators in the range of all possible
rational tuning of the controller for a given FOPDT plant model. The fourth task is to develop a
software application with a graphical interface in MATLAB language, which allows convenient
optimization for an arbitrary rational FOPDT model. The most significant result was that the pointed-
out performance indicators can be accurately calculated for all possible rational tunings of a PI
controller with an arbitrary FOPDT model in a second. The significance of the results was that it
allows to reduce an optimization procedure to a table search and to achieve any multi-term
performance criteria. The effectiveness of the procedure has been demonstrated on a set of different
FOPDT models. It is shown that there is no dependence in accuracy of calculation from model or
controller coefficients.
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O metoda rapida si precisa pentru reglarea controlerelor SISO utilizind sapte criterii de performanta
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Rezumat. Scopul lucrarii este dezvoltarea unui algoritm si a software-ului corespunzitor, care permite
executarea optimizarii multicriteriale a unui sistem de control cu controler PI si instalatie FOPDT. Utilizam
urmatorii sapte indicatori de performantd pentru a gasi reglajele optime: marja de castig, marja de faza, frecventa
de taiere, frecventa critica, marja de intarziere relativa, depasirea relativa, marimea maxima a actiunii de control.
Criteriile de optimizare pot include constrangeri asupra oricarui numar de indicatori. Scopul lucrarii este atins
prin rezolvarea urmatoarelor sarcini. Prima sarcind este de a crea formule si proceduri pentru calculul precis al
indicatorilor de performanta ai sistemelor de control. A doua sarcind este de a dezvolta o procedurd pentru cea
mai rapida simulare posibild a unui sistem de control, cu orientarea spre utilizarea unui model cu structurd de
intarzieri interne si a unui solver special pentru acesta. A treia sarcina este de a dezvolta un algoritm pentru
calcularea rapida a indicatorilor de performanta in intervalul tuturor reglajelor rationale posibile ale regulatorului
pentru un anumit model de instalatie FOPDT. A patra sarcind este de a dezvolta o aplicatie software cu o
interfatd grafica in limbajul MATLAB, care permite optimizarea convenabild pentru un model FOPDT rational
arbitrar. Cel mai semnificativ rezultat a fost ca indicatorii de performantd evidentiati pot fi calculati cu exactitate
pentru toate reglajele rationale posibile ale unui controler PI cu un model FOPDT arbitrar intr-o secunda.
Semnificatia rezultatelor a fost ca aceasta permite reducerea unei proceduri de optimizare la o cautare in tabel si
realizarea oricarui criteriu de performantd pe mai multe termene. Eficacitatea procedurii a fost demonstrata pe un
set de modele FOPDT diferite. S-a demonstrat ca nu existd nicio dependenta in precizia calculului de coeficientii
modelului sau ai regulatorului.

Cuvinte-cheie: sistem de control, controler PI, FOPDT, intarziere, timp mort, optimizare, indicatori de
performantd, viteza de simulare, formule, precizie.
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BoicTphlii 1 TouHbli MeToa HacTpoliku SISO perysiTopoB ¢ HCIOJIb30BaHHEM CeMHU KPUTEpHeB KauecTBa
Cromakesnd A. A, Ctonakesud Ai. A.?
' TocyapCTBEHHBII YHUBEPCUTET MHTEILIEKTYATbHBIX TEXHOIOTUN U CBA3U
2 HanmoHanwsHeI yHuBepcuteT «Oecckas MojuTexHukay», Onecca, YKpauna

Annomayusn. 1lensio paboTsl sBIIIETCS pa3paboTKa alrOpUTMa U COOTBETCTBYIOIIETO MPOTPaMMHOTO obecriede-
HUS, TIO3BOJIAIOIIETO IPOBOAWTH MHOTOKPHUTEPHANbHYI0 ONTHMH3AIMIO CHCTeMBbl ympasinerus c [IM-
perynsaTopoM U o0bekToM, 3amaHHbiIM FOPDT monensio. s moncka ONTUMAIBHBIX HACTPOEK HCIOIB3YIOTCS
CJIEAYIOIINE CEMb MOKa3aTeJIel KauecTBa: 3amac Mo Ko3(GGHUINEHTY yCHIIeHHs, 3amac no (ase, 4acToTa cpesa,
KpUTHYECKas 4acTOTa, OTHOCUTEIBHBIN 3amac 1o 3ama3/blBaHUI0, OTHOCUTEIBHOE MepeperyaIupoBaHue, MaKCcH-
MaJlbHasl BeIMYMHA YIPaBIISIONET0 Bo3AeHCTBUA. KpuTepun onTUMHM3alMu MOTYT BKJIIOYaTh OIpaHUYCHMS Ha
TpaHMIBl U3MEHEHHs JI000T0 KoJMuecTBa Nokasareieid. Llexb paboThl JOCTUTAeTCsl MyTeM pEIIeHUs CIenylo-
mux 3axad. [lepBas 3agava - co3panue GopMys M IpOLERYp Ul TOYHOTO pacyera IokKa3aTeiell KayecTBa CH-
cTeM yrpasienus. Bropas 3amaua - pa3paboTka npoueaypbl MaKCUMaIbHO OBICTPOrO MOZEIMPOBAHUS CHCTEMBI
yIpaBIEHUs C OpUEHTAlMel Ha HCITIOIb30BaHUE MOJIENU CO CTPYKTYpPON BHYTPEHHUX 3aJI€PXKEK U CIELHUAIBHOTO
pemrarens aist Hee. TpeThs 3a1a4a - pa3paboTKa aaroputMa ObICTPOrO pacdeTa IoKa3aTeleil KadyecTBa B Anara-
30HE BCEX BO3MOXKHBIX PallMOHAJIBHBIX HACTpOEK peryistopa uid 3aganHol FOPDT monenu. YerBepTas 3anada
- pa3paboTKa MPOTPaMMHOTO MPWIIOKEHHUs ¢ rpadudecknm mHTepdeticom Ha s3pike MATLAB, mo3Bossromero
yI0OHO TPOBOJUTH ONTHUMH3ALHUIO IS IPOU3BOIBHOHN panmoHanbHOH Moaenn FOPDT. Hanbomnee BaKHBIM pe-
3yJIBTATOM CTaJIO TO, YTO yKa3aHHbBIE MOKA3aTeIH KauecTBAa MOTYT OBITh TOYHO PACCUUTAHBI JUI BCEX BO3MOX-
HBIX panuoHanbHbIX HacTpoek [IM-perynsaropa ¢ npousBosnbHOil FOPDT mopaenbio. 3HaUMMOCTh MOJIyYEHHBIX
Pe3yIbTaTOB 3aKJIIOYAETCS B TOM, YTO OHM IO3BOJISIOT CBECTH MPOLEAYPY ONTUMHU3AIMH K TAOJIMYHOMY HOUCKY
U JIOCTHYB JIIOOBIX KOMIUIEKCHBIX KpUTEpUEB onTUMH3anui. DY EeKTHBHOCTh NPOLEypbl Oblia MPOAEMOHCTPHU-
poBaHa Ha MHOXecTBe pa3nnuHbiX Mozeneit FOPDT. [TokazaHo, 4TO TOYHOCTh pacueTa He 3aBUCUT OT KOd(pdu-
IIIEHTOB MOJIENIH WIH PEryiIaTopa.

Knrouesuvie cnoea: 3amnazpiBaHue, ONTUMHU3AINS, TIOKA3aTENIN KadecTBa, OBICTPOE MOJICIMPOBaHHEe, OOBEKT Mep-
BOTO MOPSKA C 3ala3IbIBaHIEM.

INTRODUCTION rameters of a control system without modeling
are mostly inaccurate [4], so it is possible to
achieve a variety of performance indicators only
using multi-criteria optimization. The first diffi-
culty of this approach is the presence of unstable
zones, due to which the algorithm can find some
local minimum. The second difficulty is that the
known performance indicators contradict each
other [5] and limit the possible range of changing
each other. This problem is attempted to be
solved by applying heuristic search methods
such as genetic algorithms (GA)[6].

The application of heuristic optimization algo-
rithms and the overwhelming number of other
classical algorithms to the problem of optimizing
PID family controller tunings requires simulation
of control system transients. Many works to
solve this problem are investigation integral cri-
teria optimization, while multi-criteria optimiza-
tion is rarely considered. One of the exceptions is
the paper [7], in which the applied optimization
problem of a PID controller with fractional de-
rivatives is solved with the help of a PSO algo-
rithm. It used the complex 8 term criterion, in-
cluding direct performance indicators, integral
IAE index, and frequency margins indicators.

The specialized multi-parameter optimization
algorithm described in [8]. For a PI controller, it
allows two indicators to be achieved simultane-
ously within a period of up to 1000 iterations.

Usually, the tuning of PID family controllers
in the design of control systems with FOPDT
plant is found using simplified formulas [1],
which more or less guarantee achieving one of
the performance criteria of the control system.
Software tools for tuning calculation are also
developed. For example, MATLAB program
pidtune [2], by default, accurately achieves a
phase margin value and approximately an over-
shoot value of about 5%.

The possibility of replacing PID family con-
trollers with controllers that take into account the
saturation of the control action in the control law
is discussed in [3]. The authors conclude that the
problem with using more theoretically advanced
controllers is that their effectiveness is only
achieved in cases where there is an accurate line-
ar model. In the other case, a PID family control-
ler will usually show comparable or better con-
trol performance than more theoretically ad-
vanced controllers.

PID family controllers are limited by their
fixed structure and the presence of delay in the
plant model. This means that even within linear
systems and without saturation of the control
action it is analytically impossible to achieve an
arbitrary performance indicator of the control
system. Universal formulas for estimation of pa-
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The analysis of genetic algorithm capabilities
for the problem of PID controller tuning optimi-
zation based on direct and frequency perfor-
mance indicators, carried out in [9]. Both direct
indicators and integral indices were used as op-
timization criteria. To simplify the computational
complexity of the problem, the transient model-
ing was performed using the delay approxima-
tion and the very fast plant was considered for
control. The shortcomings of the genetic algo-
rithm were evaluated. In addition to the fact that
it may not converge even within the tuning
bounds near found by other tuning methods, sig-
nificant difficulties arise with optimization by
frequency indicators in the time domain. The
possibility of achieving other performance indi-
cators also has been analyzed.

Of course, it is a desirable option to obtain a
controller that satisfies the given constraints by
tunings that fit the performance criteria require-
ments without applying optimization. This prob-
lem has been considered in [10-12]. The papers
are based on the analytical approach to limit (or
exactly achieve) the performance criteria of the
control system with 1-2 indicators. However,
within the approach limitations, it is difficult to
achieve simple dependencies without imposing
restrictions on the controller tunings.

In this study, we consider the problem of de-
signing a standard form PI controller which is
usually used for FOPDT plant models [1].
FOPDT models with both minimal delay and
dominant delay are considered.

FORMULATION OF THE RESEARCH
GOAL, A NEW APPROACH TO THE OP-
TIMIZATION PROBLEM AND RE-
SEARCH TASKS

The goal of the research is the development of
an algorithm and corresponding software in
MATLAB language, which allows the execution
of multi-criteria optimization of a control system
with PI controller and FOPDT plant and has the
following advantages: speed, guaranteed finding
of a solution or certainty that there is no solution,
possibility of use for optimization of such crite-
ria which are very difficult to optimize. We use
the following seven performance indicators to
find the optimal tunings: gain margin (GM),
phase margin (PM), cutoff frequency (o, ), criti-

cal frequency (o,), relative delay margin

(DM)r,, , relative overshoot M, , maximum con-
when the reference is

max

trol action magnitudeu
changed by one.
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The basic idea of optimization is to create the
space and then to reduce obtaining controller
tunings that satisfy the desired criteria to search-
ing in a table for rows with values close to the
desired criteria terms values using a distance
metric. To form such a space, it is necessary to
obtain the entire set of rational PI controller tun-
ings with a small step and to determine the speci-
fied seven performance indicators of control sys-
tems. The optimal size of tunings set for the
problem is 50-100 thousand tunings. It is possi-
ble to solve such a problem by simulation of
transient processes, but it will be very long.
Therefore, another approach is needed here.

The main idea of the proposed approach is to
calculate the performance indicators over the
whole range of rational controller tuning with the
minimum possible use of simulation of transi-
ents. If there are calculation formulas, it is no
problem to calculate them 100 thousand times
for a modern computer. Formulas for obtaining
performance indicators for control systems can
be derived analytically, but they will not be accu-
rate for all cases. Since accuracy is required for
the task under consideration, additional formulas
and ways of applying simple optimization meth-
ods for accurate determination of performance
indicators are proposed. The last two perfor-
mance indicators are generally not reduced to
formulas in which no equations should be
solved. For example, extremely complex formu-
las with inner equations for calculating the last
two performance indicators are derived analyti-
cally by using the inverse Laplace transform with
delay approximation in MATLAB symbolic cal-
culations. On the other hand, use of simplifica-
tions seriously decrease accuracy. Therefore, in
order to determine the last two indicators, it is
necessary to carry out simulations at characteris-
tic points and to relate the obtained data to the
calculated indicators in order to obtain their es-
timation over the whole range.

Thus, the research tasks are as follows

1) To create formulas and procedures for accu-
rate calculation of performance indicators of
control systems.

2) To develop a procedure for the fastest pos-
sible simulation of the transient processes of the
control system with the PI controller and the
FOPDT model in MATLAB with the orientation
on the application of the model with the structure
of internal delays and a special solver for dynam-
ical systems with internal delays.

3) To develop an algorithm for fast calculation
of control system performance indicators in the



PROBLEMELE ENERGETICII REGIONALE 1 (65)2025

range of all possible rational tuning of the con-
troller for a given FOPDT plant model.

4) To develop a software application with a
graphical interface in MATLAB language, which
allows convenient optimization for an arbitrary
rational FOPDT model.

DEVELOPMENT OF FORMULAS AND
PROCEDURES FOR ACCURATE ANA-
LYTICAL AND SEMI-EMPIRICAL CAL-
CULATION OF PERFORMANCE INDICA-
TORS

The plant model has the following transfer
function (TF)

k
P(s)= e " 1
(s) T-s+1 ¢ M
The PI controller model has the following TF
1
C(s)=k, -|1+— 2
(1=t 1o ] @
The open loop model has the following TF
1 k-e™"
L(s)=C(s)-P(s)=k, | 1+— |
(s)=C(s)-P(s) p( +Tl,.s) T-s+1

By definition, the stability margin frequency w,

is the frequency at which the amplitude is 0 dB
(and, by the same token, the TF modulus is 1).
The TF modulus at frequencyw, is calculated

for open loop model as follows:

) 1 koo /08"
|L(jog )=k, | 1+ T
Jrog-T; T-]-o)g+l‘
PI controller model module
ky| 1+ ! =k, 1+;2
Jo T, (0,T;)
Plant model module
koo | | peoes | g
|T-j'cog+1| ‘\/(T-mg)2+1‘ \/(T-cog)2+1

We rejected the complex exponent due to the
fact that such an exponent, regardless of the sign,
describes the rotation on the complex plane
without changing the length (modulus) of the
vector.

Open loop model module

| k
1+— .
J(T -0, P +1

j.o)g.

[ L(j-o, )=k,

=

Next, we combine

1 k
|L(joo, )| =k, 1+ - =1
(0g-T.)" [T -w,)*+1
4

and finally, we get

161

(kp-k*-T,=T;)+

T~k T 44k k2T

B 2.T-T?
By finding o, we can calculate the PM.

For the phase of the PI controller and the plant,
an important parameter is the frequency of the
stability margin o, .Phase shift of PI controller is

dp =-atan(1/ (0, -T;)),

of aperiodic link is
Oro = -atan((ng -T) ,

Og

€)

of delay link is
bp =—0, T .
Taking the reference point we can get the phase
margin (in degrees)
- 180
]J =@

-atan
T

atan(T-m, )-T-@, +7

If the value exceeds 180°, the phase should be
returned.

By definition of the cutoff frequency, the
modulus of the TF L(s) at the frequency o, must

equal unity
k- [1 + J

1L(j o) =]k, -o-Bl=[k,|- |- [BI=1

k, /T,

kp-(o

4

1
j'(‘oc'T;'

ke /0"

T-j~0)c+1|_

[L(j-o.)F

where
1 k
lof = [1+ IBI= .
(0.T;) J(To, P +1
Next, let's express o, from the equa-

tion| L(j-w,.)|=1

f 1 _ 2
kp'k' 1+m— (T(Dc) +1 -

(k, -k)z-[1+—(m ?T)2j=(T~mc)2+l—>

(ky kPP (0F T2 +1) = 02 T2 (T 0, )* +1) >
1ol =((k, k)T ~T7)- 0 +(k, k) =0
It’s a biquadratic equation

a-of+b-o+c=0, a=T>-T?,

b==|(k, k) -T> =T |, e=(k, k)"’

whose solution reduces to
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1 1

n+ mP—4-me1
I, T

= i ®)

This formula does not prove to be accurate be-
cause the delay has some effect on the dynamics.
Since the following performance indicators de-
pend on the cutoff frequency value, high accura-
cy is desirable. In order to calculate the cutoff
frequency accurately, the use of two additional
procedures is suggested.

The first procedure is the correction, based on
the value of o,, which is calculated exactly ac-

(O

ce

cording to the formula (5)
@0 =0.97225-,, +0.012757 -, —

0.00029127- @, - ®,, —0.0016191+ (6)

0.00018348-®,” +0.00019431- @,
The second procedure is a simple optimization,
which finds the exact value of w, by takingw,,,
as the starting point and finding the value ofw,,
which corresponds to the change of the sign of
the angle w,,, by the formula

_ 1
Loj-o,

1+ A

180

7
T -j-o +1 ™

T
It takes no more than 10 calculations with bisec-
tion method to find a value to the third digit after
the point.

We can find the gain margin (abs) by referring
to the exact value of the cutoff frequencyw, .

Let's proceed directly from the definition of GM

1 (8)
b )

The delay margin is directly related to PM,®

GM =

L]
I-(i-o,)

k
T-(i-o,)+1

~v(i0, )

g b
we define it as

)

T m

g

It remains to define two parameters: the maxi-
mum control actionu,,,, and the value of relative

X

overshoot M, . These parameters are related to

the damping{ and, in principle, to all the above

performance indicators, and there is a significant
and very non-linear relationship witht/T .
These indicators are easily determined when an
aperiodic process is considered (analytically, the
problem of calculating controller tunings for
such a process is given in [16]) or at least the

162

tuning method is known (such a problem is con-
sidered in [10,15]). But in the general case, com-
plex polynomial equations are required, which
do not provide high accuracy. Therefore, another
approach has been adopted: to simulate control
systems with a certain set of controllers, to ob-
tain the value for each case of the maximum val-
ue of the control actionu,,,, and the maximum

value of the controlled variabley,, . For these

performance indicators with the help of some
previously calculated ones, we can obtain exact
approximation equations related to the calculated
indicators for all points. These will be local
equations that describe only one case and are not
complex. It is recommended to use the spline
interpolation algorithm “thinplateinterp”, imple-
ment by the fit function.

Thus, the data for calculatingu,,,, andM, is
derived from the results of calculating the per-
formance indicators of the set.

From the values of PM,t

s Ymo

max

Mp:ymax—l , a

spline equation is obtained to calcu-

late M, = f(PM 1, ).

From the values of PM, o, ,u a spline equa-

max >

tion is obtained to calculateu,,,, = f(©g, 4 ) -

In order to make the simulation of control sys-
tems with the desired controllers as fast as possi-
ble, we will perform the simulation in a special
way. We will focus on the peculiarities of the
implementation of the modeling procedure in
MATLAB.

DEVELOPMENT OF THE PROCEDURE
FOR THE FASTEST POSSIBLE TRANSI-
ENT SIMULATION WITH PI CONTROL-
LER AND FOPDT PLANT IN MATLAB

In scientific literature, the problem of transi-
ents’ simulation for application in optimization
problems using mathematical programming lan-
guages such as MATLAB is usually not consid-
ered. This is in our opinion a significant disad-
vantage, because, as it turns out, the time of
model construction and the time of transient
simulation within the capabilities of MATLAB
language can differ by orders of magnitude de-
pending on the applied procedures. Thus, in the
example [17] the step function with sampling
time Ar =0.001 is applied for simulation of tran-
sient processes. Specification of a Ar value au-
tomatically switch the solver into the mode of
discrete modeling with transformation of the
model into discrete form. This is convenient for
the calculation of integral index, but from simu-
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lation speed point of view it is not an optimal
approach.

For accurate and fast determination of perfor-
mance indicators it is necessary: not to use delay
approximation and to avoid discrete modeling.
The delay approximation slightly modifies the
performance of control system (see examples of
the effect of different approximations on direct
control system performance indicators in [19]).
And since a small sampling time is critical for
the simulation process only at a small interval
from the end of the delay until reaching 2/3 of
the value of the controlled variable, it is reasona-
ble to simulate the rest of the process dynamics
with a large sampling time. For this purpose, a
variable step solver is needed to support delayed
systems.

Tunings of the PI controller (variables kp, Ti)
for the plant model (variables k, T, tau) will be
determined by the program pidfune. In total,
within the standard MATLAB tools (without
Simulink) we can distinguish 6 options for the
implementation of transient simulation by refer-
ence change:

1) P=k*exp(-tau*s)/(T*s+1); C=pidstd(kp,Ti);
CL=(C*P)/(C*P+1);

2) P=k*exp(-tau*s)/(T*s+1); C=pidstd(kp,Ti);
CL=feedback(C*P,1);

3) P=tfik,[T 1],'ioDelay',tau); C=pidstd(kp,Ti);
CL=(C*P)/(C*P+1);

4) P=tf(k,[T 1],'ioDelay',tau); C=pidstd(kp,Ti);
CL=feedback(C*P,1);

5) P=ss(-1/T ,k/T,1,0,'InputDelay',tau);
C=ss(0,1,kp/T1,kp); L=P*C; CL=L/(L+1);

6) P=ss(-1/T,k/T,1,0,'InputDelay',tau);
C=ss5(0,1,kp/Ti,kp); CL=feedback(P*C,1);,

The first two options require initialization of
the variable s=tf{'s");

For all cases the transient simulation is per-
formed with the command

[y,t]=step(CL).

The functions tic and foc are used to measure
the time to construct the control system model
and the time to simulate the transient process
using this model.

Let us draw some conclusions about the found
features of these options. The feedback function
closes the loop without creating redundant states,
which affects the speed of transient simulation.
Writing transfer functions in algebraic form with
respect to the operator s to create a model in TF
slows down the construction of the control sys-
tem model and slightly, but still increases the
simulation time. The state-space (SS) form, as
the experiment shows, is the most effective, both
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in terms of speed of model construction and in
terms of speed of transient computation.

This behavior is explained by the fact that
MATLAB, when performing operations with TF,
converts them to state space and, when possible,
translates them back to the original form of the
model after execution. Since MATLAB (as well
as similar packages) uses linear algebra libraries
(LAPACK, Intel oneMKL, etc.) at the lower lev-
el, the natural form of model representation for it
is the state space. A detailed description of the
development history of MATLAB and an over-
view of its modern architecture can be found in
[18]. After R2017b, MATLAB begins to use the
descriptive state space (DSS) form [20] with the
addition of internal delays to represent delayed
systems. In essence, DSS is a SS model (parame-
ters 4,B,C,D) extended by a fifth parameter, ma-
trix E. The rule for calculating the derivative of
the state vector in DSS is as follows:

E-x=A4-x+B-u,y=C-x+D-u

A model in the DSS form with internal delays
is described by a system of equations of the fol-
lowing form

E-x=A-x(t)+B -u(t)+B, -w(t)

(1) =C-x(1)+Dyy-u(t)+ Dy -w(t)

Z(t)=C, - x(t)+ Dy, -u(t)+ Dy -W(t)

As we can see, matrix B is split into two parts,
matrix C is also split, and matrix D is split into
four parts. The system model now has two types
of inputs and outputs. The external inputs with
respect to u(?) and the outputs y(z) go first, fol-
lowed by the internal inputs and outputs. The
internal outputs of the system z(?) pass through
the delay block and as a signal w(?) enters the
internal inputs. The number of internal and ex-
ternal outputs may not be equal.

When constructing a closed-loop control sys-
tem, a DSS system with two identical delays is
created. The first delay reflects the delay in the
numerator, the second - in the denominator of the
control system TF. We derive analytical model
of closed-loop control system in DSS with de-
lays for compactness with respect to zero matri-
ces

A=0

(10)

B =0, ,B,=0

nxn’ = Ynxmy nxmy
Cl :Omlxn’CZ :Omzxn’ (11)
Dll = Omlxml ’DIZ = Omlxmz ’
D21 = Omzxml ’D22 = Omzxmz ’E = Onxn

The model of closed-loop control system with
controlled variable as output variable is de-
scribed by the following parameters:
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n=5m =lm,=2A411)=A(33)=-1/T,

B/(51)=—1,B,(11)=B,(3,2)=k /T

Cy(1.2)=Cy(2.4)=k, /T,

G(51)=Cy(52)=k,,

A(2,5)=A(4,5)=A(3,5)= A(5,5)=C,(1) =

E(L1)=E(2,2)=E(3,3)=E(44)=1

The model of closed-loop control system with
manipulated variable as output variable is de-
scribed by the following parameters:

n=4,m =lm,=1,4(2,2)=-1/T,

B/(41)=-1B,(21)=k/T

Cy(11)=Cy(13) =k, /T,

G(L4)=Cy(L4)=k,

A(L4)= A(3,4)= A(4,2) = A(4,4) =

E(1,1)=E(2,2)=E(33)=1

Now we have all the input data for the soft-
ware implementation of transient simulation.

Let's consider two additional options of im-
plementation of such a structure.

Option #7. The model of control system is re-
alized as a DSS system and transferred to the
step function

CL = setDelayModel(A,B1,B2,C1,C2,
D11,D12,D21,D22,[tau;tau]); CL.E=E;

[y.t]=step(CL_my);

Option #8. The model is constructed using the
isproper function and simulated by the undocu-
mented function ddaeresp. This function, after
resource consuming check of several conditions,
is called in the step function to simulate systems
with internal delays.

First, let's define the structure containing the
DSS model.

DI=ltipack.ssdata();Dl.a=A; DI.b=[B1 B2];

DILc=[C1; C2]; DL.d=[D11 D12; D21 D22];

DI.e=E;

DI.Delay=struct('Input',0,'Output',0,...
'Internal’, [tau;tau]); DI1.Ts=0;

The systems (12), (13) are not proper This
means that the descriptor system has impulse
(algebraic) modes. The indicator of an improper
system is the incomplete rank of the matrix £. A
proper system is elementarily translated into a
regular state space by multiplying both parts of
the equation by £7/. An improper system requires
special algorithms to recalculate it into a stand-
ard state space form [21], the main idea of which
is to remove the algebraic part by finding such a
transformation of the system that the matrix E
becomes diagonal. The isproper function trans-
forms the system into the proper form, i.e., a
regular state space system, and applies scaling to

(12)

(13)
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emphasize the dominant dynamics in the fre-
quency domain.

[is_ok, D_CL] = isproper(DL,2);

The D_CL system can now be modeled using a
delayed differential equation solver. The basic
description of the solver's algorithm is given in
[22]. The algorithm is designed for stable linear
systems, is limited to a few possible input signals
(in the MATLAB implementation it seems to be
only step signals), and is oriented on the fact that
the value of the rational sample time of the solv-
er increases with the simulation time. The small-
est sample time is reasonable at points between
delays.

SimlInfo = struct ('FinalValue', Inf, 'IC',[], ...
'MaxSample', 50000, 'DivThreshold', 10000, ...
'ComputeX', 0, XMap', {[]}, 'uinit, 0,...

'du’, 0, xinit!, []); [y.t,tFocus] = ...
ddaeresp(D_CL,[],[],SimInfo);

The solver simulates systems on a channel-by-
channel basis. Therefore, construction of MIMO
systems does not improve speed. The ddaeresp
function is not described in the MATLAB doc-
umentation, the list of possible parameters de-
pends on the language version and can be
changed without warning. The operability of the
structure has been verified in R2021a and
R2024a. For R2021a parameters after XMap are
not required, but parameter overflow is not a
problem, the problem is the lack of required pa-
rameters. The list of parameters for specific
MATLAB version can be obtained from the step
function code or by using a debugger.

To correctly set up an experiment to determine
the fastest option, it is necessary to take into ac-
count certain peculiarities of the MATLAB envi-
ronment. In MATLAB, operations that do the
same thing can be unequal in terms of speed and
resources used. In addition, MATLAB uses op-
timization to perform repetitive operations, but
this also has its own peculiarities, and the effi-
ciency can be significantly different [23].

The following techniques were used for the
clean experiment: 1) before executing the script,
the workspace was cleared with the clear all
command; 2) transients were simulated when
executing the script with only one of the options,
since sequential execution with different options
distorts the results; 3) only model construction
time and simulation time were measured sepa-
rately, auxiliary operations were not measured.

The results of experiment to find the fastest
option of simulation implementation are shown
in Table 1. The main experiment was conducted
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on a 4-core Intel processor in the MATLAB
R2021a environment.

The following conclusions can be drawn from
Table 1:
1) the execution time of one iteration does not
depend or almost does not depend on the ratio of
FOPDT parameters of the model,;
2) in cyclic simulation execution, the average
time is less than the time of one iteration due to
MATLAB optimization algorithms;
3) the acceleration factor of cyclic operations is
very uneven and is for

#1 - 32, #2 - 62, #3 - 51, #4 - 138, #5 - 147,
#6 - 308, #7 - 256, #8 - 999;

4) ss, feedback, step is the most effective combi-
nation among the standard approaches;

5) application of the setDelayModel function
with passing the model in the DSS with delay
and its subsequent modeling with step function is
less effective than option #6;

6) option #8 allows achieving significant accel-
eration, especially when applied in cyclic algo-
rithms.

Table 1.

Experimental results on determining the speed of different options for obtaining transients of control
system by reference with controlled variable as the output in MATLAB R2021a

Single experiment 320 experiments performed in a loop without clearing the
workspace between loops
k=1,21,41, 61, 81
Option # k=1 =5 | k=1 k=1 T=1, 26, 51,76 Simulations per
=10 =10 | 7=50 | T=10 [=1,26, 51,76, 101, 126, 151, 176, 201, 226,| second (average of
=5 =5 =5 | =50 251,276 2 attempts)
Attempt 1 Attempt 2
0.4* 0.4 0.38 | 0.38 7.43 0.023219 | 7.36 0.023 21.63624
1 0.2%* 0.2 0.17 | 0.17 1.78 0.005563 1.77 | 0.005531 90.14085
0.54"" | 0.55 | 0.54 | 0.54 9.21 0.028781 | 9:12 0.0285 17.45772
0.3 0.3 0.31 | 0.31 5.82 0.018188 5.8 0.018125 27.53873
2 0.1 0.1 0.08 | 0.08 0.8 0.0025 0.79 | 0.002469 201.2579
0.39 0.38 | 0.39 | 0.38 6.62 0.020688 | 6.59 | 0.020594 24.22407
0.3 0.3 0.3 0.3 4.85 0.015156 | 4.94 | 0.015438 32.68641
3 0.2 0.2 0.17 | 0.16 1.76 0.0055 1.79 | 0.005594 90.14085
0.47 0.47 | 0.47 | 0.46 6.61 0.020656 | 6.73 | 0.021031 23.98801
0.2 0.2 0.22 | 0.22 3.18 0.009938 | 3.24 | 0.010125 49.84424
4 0.1 0.1 0.08 | 0.08 0.8 0.0025 0.81 | 0.002531 198.7578
0.29 029 | 03 0.3 3.98 0.012438 | 4.04 | 0.012625 39.90025
0.2 0.2 0.17 | 0.17 1.62 0.005063 1.63 | 0.005094 98.46154
5 0.2 0.2 0.16 | 0.16 1.67 0.005219 1.68 0.00525 95.52239
0.33 0.33 | 0.33 | 0.33 3.29 0.010281 | 3.31 | 0.010344 48.48485
0.2 0.2 0.15 | 0.15 1.49 0.004656 1.51 | 0.004719 106.6667
6 0.1 0.1 0.08 | 0.08 0.75 0.002344 | 0.76 | 0.002375 211.9205
0.23 0.23 | 0.23 | 0.23 2.24 0.007 2.28 | 0.007125 70.79646
0.1 0.1 0.08 | 0.08 0.8 0.0025 0.8 0.0025 200
7 0.2 0.2 0.17 | 0.17 1.69 0.005281 1.71 | 0.005344 94.11765
0.25 0.25 | 0.25 | 0.25 2.49 0.007781 2.51 | 0.007844 64
0.1 0.1 0.09 | 0.08 0.82 0.002563 | 0.82 | 0.002563 195.122
8 0 0 0.04 | 0.04 0.52 0.001625 | 0.52 | 0.001625 307.6923
0.12 0.12 | 0.12 | 0.12 1.34 0.004188 1.33 | 0.004156 119.8502

Note: * — time of control system model construction, ** — simulation time, *** —sum.
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The experiment was also repeated in R2024a
version. The results are slightly different, but
tendency is the same.

AN ALGORITHM FOR GENERATING A
SET OF RATIONAL PI CONTROLLER

TUNINGS WITH THE EVALUATION OF
SEVEN PERFORMANCE INDICATORS

ues of performance indicators and estimate their
variation, it is necessary to calculate the set of all
possible controller tunings. If the step is small
sands, so a special approach is needed to solve
the problem in seconds.

To find the starting tunings, we apply the
tunings for any value of t /7 and is simple

n = ]l( (Lj T, =min(T,4-(1+X1)), A=1(14)
The value of the controller gain coefficient as in
the parametera=k-t/T . The value of integra-
tion time is determined by a nonlinear function.
The cutoff frequency and critical frequency are
spite the strong correlation of the control system
performance indicators, the method ensures that
all frequency margins and oscillation indicators
GM is not high (~2) and the relative DM is low
compared to some other methods.

The proposed algorithm starts by checking the
The parameters must be real positive numbers.
The model witht/7T > 6 is rejected as irrational,
since it is appropriate to use an I-controller, a
controller for such plants. The model
witht/7T <0.03 is defined as reasonable for us-
ing analytical tuning methods for plant models
the dynamics of the real plant. A model with at
least one parameter less than 10 or more than
1000 is defined as unsuitable because it will lead
model should be rescaled in time and/or in gain
units.

An array with possible controller tunings is ini-
dicators of the control system, the array is sorted
by the column k, . By performing element-by-
element operations on the functions with respect

In order to be able to easily select desired val-
enough, this is a large number - tens of thou-
SIMC method [24], since it gives satisfactory

k \n+t
Ziegler-Nichols based methods is determined by
completely determined by the value of t . De-
are close to a constant value. The magnitude of
input data — FOPDT model parameters &, 7, t.
Dahlin controller or a Smith predictor with a PI-
without delay, depending on the peculiarities of
to problems with calculation accuracy. Such a
tialized using the meshgrid function and the in-
to the whole columns of the array, the indicators
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of the control systems are calculated and inap-
propriate tunings are rejected in this sequence.
1) Calculation o, :fmg (k.T.k,.T;)

2) Calculation PM = fp), (T, %.k,.T;, 0, )

3) Deleting tunings with PM<5° or PM>90°
4) Calculation o, = Jo (KT.k,,T;)

5) Calculationo, = f, (k.T.v.k,.T;,0,)
6) Deleting tunings with imaginary valuesw,
oro, (occurs in some extreme cases)

7) Calculation GM = f, (k,T,vk,.T;, 0. )

8) Deleting tunings with GM<1
9) Calculationt,, = f, (t,PM,o, )

10) With an interval of 300 a set of tunings is
created for simulation of control systems.

11) Simulation is carried out using option #8 for
closed-loop control system according to the
formed set (with respect to the controlled varia-
ble and the manipulated variable), the maximum
values of the controlled variables are fixed
in. y,,,. and of manipulated variables in u,,,, .

12) Based on the simulation results, functions are
generated using spline approximation (fit func-
tion with “thinplateinterp” method)

fMp(PM,Tm),fumax(PM,u)g) .
13) The values of M o Uma for all tunings for

which they were not obtained by simulation are
calculated using the functions.
14) Tunings with M, > 2 are deleted.

15) The negative values of performance indicator
M, are equated to zero.

Having a set of all suitable tunings according to
the formulas (3)-(9) we form a table of the fol-
lowing form: k,,7,, GM ,PM ,®,,® M, .
By setting one or more constraints on the mini-
mum and maximumo,,®,,T,, M, we select

g’tm’umax’

4 umax

a sub-table with allowable performance indicator
values. Preferably, the user should enable the
constraints sequentially, so that the tolerance of
other indicators that can be included in the con-
straints can be calculated. There should be a rea-
sonable difference between the minimum and
maximum of the allowable indicator value (at
least 5%). Focusing on the average values of the
minimum and maximum of each indicator using
the Euclidean metric, we find the most appropri-
ate row in the subtable. Then, if the appropriate
tuning is found, we demonstrate to the user tran-
sients and accurately calculated performance
indicators.
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CHECKING THE EFFICIENCY OF THE

CALCULATION OF THE FIRST FIVE
INDICATORS
The first four indicators are frequency

parameters, andt,, in principle, is calculated by

the formula from two frequency parameters. In
MATLAB, the first four indicators can be
obtained using the margin function, and all five
indicators using the allmargin function.

As input data for the experiment, we will use
the set of admissible controller tunings filtered in
step 8 of the algorithm for the plant

model 2-¢™* /(10-s+1) . Let's save this set into a

mat file, clear the workspace and check the
calculation speed using margin, allmargin and
proposed algorithm functions. We will use for
model construction the option #6 (without
feedback) as the fastest of the standard
MATLAB approaches.

k=2;T=10;tau=5;
P=ss(-1/T,k/T,1,0,'InputDelay',tau);

In loop
#1 C=ss(0,1,kp/Ti,kp); C=ss(0,1,kp/Ti,kp);
[GM,PM,wc,wgl=margin (C*P);

#2 C=ss(0,1,kp/Ti,kp); fc=allmargin (C*P);

After discarding irrational tunings, the set of
90,000 tunings was reduced to a set of 59,652
tunings.

The computation time of constructing P*C
systems without changing P to compute function
arguments is 39.64 s, i.e., 1502.65 computations
per second.

The calculation time of P*C systems
construction together with the calculation of
frequency response by the margin function was
274.09 s, i.e. 217.64 calculations per second. The
disadvantage is that the function does not give
the DM valuer,, .

The calculation time of P*C systems together
with the calculation of frequency characteristics
by the allmargin function was 324.768334 c, i.e.
183.68  calculations per second.  The
disadvantage is that it is necessary to take
minima from the obtained vectors, as well as to
convert the DM from absolute to relative.

Now let us conduct an experiment using the
functions developed for calculating the
performance indicators, which can take as
arguments the vectors of parameters. The results
of the experiment are summarized in Table 2.

Table 2.

Results of the experiment for speed measurement of software realization of the functions based on the
formulas (3-9) in MATLAB R2021a

Performance indicators Number of
Function calculation time for 59,625 calculations per Normalized
control system models second
Op = fo, (k. T.k,.T;) 0.00150740 39554862.7 0.0020
PM = fpy (T, vk, T}, 0, ) 0.00521730 11428325.0 0.0070
o, = fo (KT,t.k,.T;,0,) 0.69884850 85318.9 0.9424
GM = fou (kT vk, T, 00,.) 0.03476820 1714929.2 0.0469
T = o, (LPM 00, ) 0.00122290 48757052.9 0.0016
Total of 5 parameters 0.74156430 80404.4 1

As we can see, we achieve acceleration com-
pared to margin/allmargin function by hundreds
of times. 94.2% of the time is taken by the calcu-
lation of w, , which optimally refines the solu-
tion having a certain error and searches for the
exact solution with an accuracy of 3 digits after
the point. If we lower the requirement, the
speedup will be even greater, but a value less
than a second is quite satisfactory.

VERIFICATION OF THE ALGORITHM
CALCULATIONS ACCURACY

We will check the accuracy using the follow-
ing methodology. We will select 6 representative
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FOPDT models and use the proposed algorithm
to find the PI controller tunings corresponding to
the phase margin PM=40, 50, 60°. Let's compare
the estimation of the algorithm and the results of
direct transient modeling and frequency response
estimation in MATLAB. More precisely, we
compare the algorithm results with the results
obtained by allmargin and stepinfo functions
from the step function. The comparison of the
results is presented in Table 3.

The developed algorithm searched among a set
of tens of thousands of pre-calculated perfor-
mance indicators of the control system for a row
with controller tunings that is closer to the de-
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sired PM. We see that the tunings suitable for the
desired phase margin are found with high accu-
racy, which actually depends on the step with
which we consider the controller tunings. The
results for models #1 and 2 show that the algo-
rithm is independent of the scale of the coeffi-
cients. The results for the other models demon-
strate that the algorithm calculate indicators
equally accurately for both dominant time con-
stant (#6) and dominant delay (#4) and in the
intermediate cases (#3, #5).

In general, differences occur at the third digit
after the point. A definite exception is only the
parameter M, , which in some cases has an error
at the second digit. But here it is a matter of a

minor difference between the transients given by
the step and ddaeresp functions.

THE PROBLEM OF MULTI-
PARAMETER OPTIMIZATION OF PID
FAMILY CONTROLLERS

Among the scientific works devoted to the op-
timization of PID family controllers for delayed
plants, clearly a smaller part considers multi-
parameter optimization. In general, optimization
by integral criteria is considered to a greater ex-
tent, since it is convenient for optimization algo-
rithms. Both classical algorithms and heuristic
algorithms cannot be efficient in such a problem
and cannot always find the optimum.

Table 3.

Comparison of obtained performance indicators by the proposed algorithm (alg.) and by standard
MATLAB (ML) functions a//margin and step+stepinfo

Model ~PM | kp Ti | Method | GM PM @, o T, Upnax M,
40 18 56 Alg. 1.485 | 40.002 | 0.867 | 0.551 | 0.633 | 2.496 | 0.375
) ) ML 1.485 | 40.006 | 0.867 | 0.551 | 0.634 | 2.496 | 0.374
l-e7%s 50 15 48 Alg. 1.748 | 50.000 | 0.851 | 0.450 | 0.970 | 2.161 0.253
3571 ' ® [TML [ 1.749 | 50.005 | 0.851 | 0.450 | 0.970 | 2.161 | 0.254
60 13 46 Alg. 2.086 | 60.001 | 0.847 | 0.363 | 1.443 1.820 | 0.116
) ) ML 2.086 | 60.001 | 0.847 | 0.363 | 1.443 1.820 | 0.119
40 18¢2 | 56 Alg. 1.485 | 40.002 | 0.867 | 0.551 | 0.633 | 0.025 | 0.375
) ) ML 1.485 | 40.006 | 0.867 | 0.551 | 0.634 | 2.496 | 0.374
100-¢7%$ 50 1562 | 43 Alg. 1.748 | 50.000 | 0.851 | 0.450 | 0.970 | 0.022 | 0.253
3571 : ® [TML_| 1.749 | 50.005 | 0.851 | 0.450 | 0.970 | 0.022 | 0.254
60 1362 | 46 Alg. 2.086 | 60.001 | 0.847 | 0.363 | 1.443 | 0.018 | 0.116
) ) ML 2.086 | 60.001 | 0.847 | 0.363 | 1.443 | 0.018 | 0.119
40 | 7.50-1 17 Alg. 2.675 | 39.999 | 1.409 | 0.608 | 1.148 1.200 | 0.373

) ) ML 2.676 | 39.999 | 1.410 | 0.608 | 1.148 1.195 | 0.311
2.7 50 13 50 Alg. 1.896 | 50.004 | 1.647 | 0.841 1.038 1.585 | 0.214
35t ' U [TML [ 1.898 | 50.002 | 1.649 | 0.841 | 1.038 | 1.585 | 0.215
60 12 73 Alg. 2.081 | 60.001 | 1.689 | 0.767 | 1.365 1.397 | 0.082
ML 2.081 | 60.002 | 1.690 | 0.767 | 1.365 1.397 | 0.078
40 1 2e-1 39 Alg. 1.753 | 40.000 | 0.111 | 0.062 | 0.754 | 0.701 0.392
) ) ML 1.752 | 40.000 | 0.111 | 0.062 | 0.754 | 0.700 | 0.384
2.7 15 50 1261 | 47 Alg. 2.098 | 50.002 | 0.116 | 0.052 | 1.116 | 0.614 | 0.217
35t 2o | T ML [ 2.097 [ 50.002 | 0.116 | 0.052 | 1.116 | 0.614 | 0.217
60 1 2e-1 56 Alg. 2.594 | 60.001 | 0.121 | 0.042 | 1.663 | 0.529 | 0.058
ML 2.591 | 60.001 | 0.121 | 0.042 | 1.663 | 0.529 | 0.055

40 5 23 Alg. 1.648 | 40.001 | 0.819 | 0.492 | 0.710 | 05.439 | 0.351

ML 1.648 | 40.001 | 0.819 | 0.492 | 0.710 | 5.441 0.341
1-e7%s 50 43 2 Alg. 1.924 | 50.002 | 0.822 | 0.420 | 1.039 | 4.632 | 0.199
10531 ' ML | 1.924 | 50.002 | 0.822 | 0.420 | 1.039 | 4.632 | 0.193
60 34 19 Alg. 2.406 | 60.000 | 0.813 | 0.330 | 1.589 | 3.760 | 0.061

) ML 2.407 | 60.000 | 0.814 | 0.330 | 1.589 | 3.760 | 0.061
40 17 29 Alg. 1.832 | 40.000 | 0.779 | 0.426 | 0.820 | 18.156 | 0.382
ML 1.833 | 39.985 | 0.780 | 0.426 | 0.820 | 18.161 | 0.378
l-e7%s 50 14 38 Alg. 2.257 | 50.000 | 0.784 | 0.348 | 1.255 | 14.622 | 0.203
40-s+1 ML 2.257 | 50.000 | 0.784 | 0.348 | 1.255 | 14.624 | 0.205
60 9.5 28 Alg. 3.273 | 59.999 | 0.778 | 0.239 | 2.192 | 10.183 | 0.067
) ML 3.275 | 59.999 | 0.778 | 0.239 | 2.192 | 10.186 | 0.067
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Some combinations of parameters in the opti-
mization criterion, regardless of weighting, can
quickly lead the optimization algorithm into the
zone of instability. At the same time, determining
from time domain simulations "how unstable the
system is" in the form of a number is not a simple
task.

In general, dynamic optimization, both building
a search route according to a certain rule and
moving to random points of space (as GA), has a
low probability of getting into the zone of global
optimum in problems with more than one per-
formance indicator in the search criterion. This is
explained by the fact that the achievement of one
performance indicator imposes significant re-
strictions on the possibility of achieving other
performance indicators. And the nature of change
in the zone of admissible parameters is not ana-
lytically predictable.

Let us consider, for example, model #5 from
Table 3 and demonstrate in Table 4 the feasibility
of applying the search procedure by sequential
refinement of constraints. The main requirement
of this method is the need to rank the perfor-
mance indicators in a certain order, i.e., to estab-
lish their priority. Further, the introduction of
each additional constraint on a new performance
indicator is realized taking into account the con-
straint zone imposed on the introduction of a
constraint on an indicator with a higher priority.
In this example, first the phase margin constraint,
then the maximum control action, and finally the
overshoot constraint. The specific values of the
constraints need to be approximated for the pro-
cedure, but the specific constraints on the second
parameter should continue to be introduced with
an eye towards possible values. If the range at
any step is not satisfactory, the requirements for
higher priority indicators should be relaxed.

Table 4.
Demonstration of finding optimal tuning by entering sequential constraints on performance indicators.
Constraints Possible values of performance indicators
PM Umax Mp GM PM We g T Mp Umax
- - - 1.06-215.13 5-90 0.5-0.83 | 0.01-0.75 | 0.06-88.45 0-2 0.95-9.1
50-70 1.91-44.72 | 50-70 0.5-0.83 | 0.04-0.42 [1.03-15.57| 0-0.21 1-4.65
50-70 | 1.5-2 | - | 4.72-9.15 5609'%16' 0.68-0.78 | 0.12-0.18 | 2.48-4.65 | 0.01-0.18 | 1.5-2.0
0.01- 63.53-
50-70 | 1.5-2 0.05 4.72-6.69 69.96 0.76-0.78 | 0.13-0.18 | 3.45-4.65 | 0.01-0.05 1.5-2.0

This approach is similar to the one used in [§],
in which it is emphasized that the optimization
problem of PID family controllers should be
solved by a hierarchy of constraints. This avoids
a highly rapid change of the function during the
route search process. The route itself should be
conducted on a selected rectangular zone, which
defines using the Routh or Nyquist stability crite-
ria (for delayed systems).

Under the above constraints, the algorithm
based on the Euclidean metric offers the follow-
ing satisfying settings:

k,=1.57,T;=7.7—

GM =4.84,PM = 63.53°,0, = 0.77,0, =0.17,
T, =3.25,M, = 0.05,u,,, =1.95

The narrowing of the area of possible settings
when restrictions are imposed is shown in Fig. 1.

Thus, we see that the zone of admissible indica-
tors is distinguished from the zone of admissible
indicators imposed by the prior constraints. The
fact that classical and, for example, genetic opti-
mization algorithms can get, say, into zone 4 un-
der a multi-parameter criterion is possible.

30

25

0 2 4 6 8

Fig. 1 - Visualization of the change in the zone
of possible tunings depending on the search
area: 1 - rational constraints only, 2 — con-
straints on PM, 3- constraints on PM & uuax,
4 — constraints on PM & uy. & M,

However, the absence of the zone of possible
indicators in the optimization problem may lead
to the fact that the search route deviates, for ex-
ample, to the zone of optimum for 2-3 indicators
and will not find the optimum for 4th. The pro-
posed approach does not have such a disad-
vantage, because it is focused on the definition of
possible indicator zones.
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CONCLUSIONS

The problem of finding PI controller tunings
for the FOPDT model under user-specified
constraints on the time domain and frequency
performance indicators is solved. The solution of
the problem does not require the use of resource-
consuming optimization algorithms and allows
the user to control the zone of achievable
indicators when introducing new constraints.
Application of theoretical and empirical formulas
allowed to make the software realization of
calculation of control systems performance
indicators for tens of thousands of combinations
of parameters k,, 7; almost instantaneous. This
was also helped by MATLAB architecture,
simple calculations in which in terms of speed
approach such languages as FORTRAN and C
[25] Attention to the procedure of transient
simulation in MATLAB allowed us to create a
procedure of derivation of empirical spline
equations on the magnitude of overshoot and
maximum control action on a relatively small set
of transient modeling results, which is carried out
significantly faster than with the use of standard
approaches to transient modeling.

The approach taken can potentially be used
for other PID family controllers, for integral
delayed control systems, for SOPDT control
systems (at least aperiodic) and for control
systems with known disturbance models.

APPENDIX 1.

DEVELOPMENT OF THE SOFTWARE
APPLICATION WITH A GRAPHICAL
INTERFACE

A program with a graphical interface on
MATLAB was developed for the convenience of
the search. The user, specifying the parameters of
the FOPDT model, gets a set of rational tunings
displayed on the graph. Further, by including the
desired constraints and specifying their value, the
user requests to find tunings. The step response
of the plant and the transients of the control sys-
tem by reference (controlled variable and control
action) are visualized so that the user can evalu-
ate the processes. The actual values of the
achieved quality parameters are also calculated
so that the user can evaluate their deviations.

The application screenshots at different cases
are shown in Fig. 2-4

The user graphical interface consists of 5 zones
(frames) arranged in 2 columns.

Zone #1 of the first column allows setting the
parameters of the FOPDT model. Changing the
parameters clears all other zones. When the user
presses the button for calculation, the other zones
are activated.

Zone No. 2 of the first column visualizes a set
of acceptable and ensuring control system stabil-
ity values of controller tunings, which will be
used for further search of optimal values corre-
sponding to the specified criteria. On the horizon-
tal scale of the graph — k, values on the vertical
scale — T; values.

Zone No. 3 of the first column allows setting a
performance indicators constraint. To enable the
constraint, the user must activate the correspond-
ing checkbox. The left input field in the row
means the minimum value, the right field means
the maximum value. A certain difference (5%)
between the minimum and maximum is mandato-
ry. The search procedure tries to find the average
value. Along with the input fields, the zones of
permissible performance indicator deviations are
marked. Values are refreshed when a constraint
on any parameter is disabled or enabled. When
the user has set the desired constraints, the user
presses the button to search for the zone of ac-
ceptable indicators. Such controller tunings are
found that correspond to the center by Euclidean
metric for the given number of performance indi-
cators.

Zone No. 4 of the second column contains
three graphs: the step response of the plant mod-
el, the transient of the controlled variable at set
point and the transient of the control action at set
point in the control system by with the found PI
controller tunings.

Zone No. 5 of the second column contains the
achieved indicators for all parameters of the con-
trol system. The first column in the zone displays
the theoretical estimation, on the basis of which
the tunings in the table were searched. The sec-
ond column displays the actual parameters of the
control system obtained by simulation and fre-
quency calculations. Ideally, the estimate and the
actual value should be very close.
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Fig. 2 — Searching for the controller tunings with PM =50..70° for the plant witht /7 = 0.5
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Fig. 3 - Multi-parameter search of controller tuning for plant witht/ 7 = 0.5
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Fig. 4 — Achievement of PM,t,, M, for the plant witht /T =2

Analyzing the figures, we see that, in general,
the theoretical indicators in all cases do not devi-
ate much from those found by simulation and
frequency calculations. The performance indica-
tors requested by the user are fully achieved.
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