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Abstract. The technical issue of congestion, which is predominantly found in deregulated power 

systems, is caused by the failure of transmission networks to satisfy load power demands. This failure 

is primarily caused due to an increase in loads or loss of transmission lines or generators in modern 

restructured power networks. This work introduces a CM approach using Deep Convolution Neural 

Network (DCNN) for minimizing congestion and supporting Independent System Operators (ISOs). 

The purpose of the work is to generate enhanced prediction outputs for congestion management with 

reduced error values. These objectives were achieved through the actual power rescheduling of 

generators. The proposed work adopts DCNN which is optimized using an Improved Lion Algorithm 

(LA) and aids in providing significant outcomes for congestion management with reduced error. By 

implementing customized IEEE 57-bus, IEEE 30-bus, and IEEE 118-bus test systems, the suggested 

approach has been successfully verified for its performance on test systems of varied sizes. This analysis 

incorporates restrictions such as line loads, bus voltage influence, generator, line limits, etc. The most 

important results for the test system indicating convergence profile, congestion cost, and change in real-

power and voltage magnitude are obtained by the simulation in MATLAB, and on the basis of the 

obtained simulation outcomes, it is evident that the proposed Improved Lion Algorithm optimized Deep 

Convolution Neural Network displays phenomenal computation performance in minimizing congestion 

losses at minimum congestion costs. When compared to several contemporary optimization techniques, 

the suggested technique performs better in terms of congestion cost and losses by generating improved 

prediction outputs with reduced errors. 
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Controlul congestiei folosind o rețea neuronală de convoluție profundă optimizată într-un mediu 

dereglementat 

Dhanadeepika B.1, Vanithasri M.2, Chakravarthi M. 
1Universitatea Annamalai, India, Tamil Nadu, 2Vasavi College of Engineering, Telangana, India. 

Rezumat. Problema tehnică a congestiei, care se găsește predominant în sistemele de energie dereglementate, este 

cauzată de eșecul rețelelor de transport de a satisface cerințele de putere a sarcinii. Această defecțiune este cauzată 

în primul rând din cauza creșterii sarcinilor sau a pierderii liniilor de transport sau generatoarelor din rețelele de 

energie restructurate moderne. Scopul lucrării este de a genera rezultate de predicție îmbunătățite pentru 

gestionarea congestiei cu valori reduse de eroare. Aceste obiective au fost atinse prin reprogramarea efectivă a 

puterii generatoarelor. Lucrarea propusă adoptă DCNN, care este optimizat folosind un algoritm Lion (LA) 

îmbunătățit și ajută la furnizarea de rezultate semnificative pentru gestionarea congestiei cu erori reduse. Prin 

implementarea sistemelor de testare personalizate IEEE 57-bus, IEEE 30-bus și IEEE 118-bus, abordarea sugerată 

a fost verificată cu succes pentru performanța sa pe sisteme de testare de dimensiuni variate. Această analiză 

încorporează restricții, cum ar fi sarcinile de linie, influența tensiunii magistralei, generatorul, limitele de linie etc. 

Cele mai importante rezultate pentru sistemul de testare care indică profilul de convergență, costul de congestie și 

modificarea puterii reale și a mărimii tensiunii sunt obținute prin simulare în MATLAB și pe baza rezultatelor 

simulării obținute, este evident că Rețeaua neuronală de convoluție profundă optimizată cu algoritmul îmbunătățit 

Lion afișează performanțe de calcul fenomenale în reducerea la minimum a pierderilor de congestie la costuri 

minime de congestie. În comparație cu mai multe tehnici de optimizare contemporane, tehnica sugerată are 

performanțe mai bune în ceea ce privește costul de congestie și pierderile prin generarea de rezultate de predicție 

îmbunătățite cu erori reduse. 

Cuvinte-cheie: controlul congestiei, algoritm leu îmbunătățit, putere dereglementată. 
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Управление перегрузками с использованием оптимизированной нейронной сети глубокой свертки 

в дерегулируемой среде 

Дханадеепика Б.1, Ванитхасри M.2, Чакравартхи M.3 
1Университет Аннамалаи, Индия, Тамил Наду, 2Васави Инженерный колледж, Индия, Телангана 

Аннотация. Техническая проблема перегрузки, которая в основном встречается в нерегулируемых 

энергосистемах, вызвана неспособностью передающих сетей удовлетворить потребности в мощности 

нагрузки. Этот сбой в первую очередь вызван увеличением нагрузки или потерей линий электропередачи 

или генераторов в современных реструктурированных электрических сетях. Таким образом, управление 

перегрузками (УП) считается незаменимым аспектом в нынешнюю эпоху дерегулирования, поскольку оно 

обеспечивает бесперебойную работу системы передачи. В этой работе представлен подход УП с 

использованием нейронной сети глубокой свертки (DCNN) для минимизации перегрузки и поддержки 

независимых системных операторов (НСО). Цель работы состоит в том, чтобы генерировать расширенные 

выходные данные прогнозирования для управления перегрузками с уменьшенными значениями ошибок. 

Эти цели были достигнуты за счет фактического перераспределения мощности генераторов. Предлагаемая 

работа использует DCNN, который оптимизирован с использованием улучшенного львиного алгоритма 

(УЛА) и помогает обеспечить значительные результаты для управления перегрузкой с уменьшенной 

ошибкой. Путем реализации настраиваемых систем тестирования с шиной IEEE 57, IEEE 30 и IEEE 118 

предложенный подход был успешно проверен на эффективность на тестовых системах различных 

размеров. Этот анализ включает в себя такие ограничения, как нагрузка на линию, влияние напряжения на 

шине, генератор, ограничения на линию и т. д. Наиболее важные результаты для тестовой системы, 

указывающие на профиль конвергенции, стоимость перегрузки и изменение реальной мощности и 

величины напряжения, получены путем моделирования в MATLAB, и на основе полученных результатов 

моделирования становится очевидным, что предложенная улучшенная нейронная сеть глубокой свертки, 

оптимизированная с помощью УЛА, демонстрирует феноменальную производительность вычислений при 

минимальных потерях из-за перегрузки при минимальных затратах на перегрузку. По сравнению с 

несколькими современными методами оптимизации предлагаемый метод работает лучше с точки зрения 

стоимости перегрузки и потерь за счет создания улучшенных выходных данных прогнозирования с 

меньшим количеством ошибок. 

Ключевые слова: управление перегрузками, улучшенный львиный алгоритм, нерегулируемая мощность. 

 

INTRODUCTION 

Electric energy is the driving force behind the 

functioning of the modern world and its rise in 

prominence is mainly because of 

industrialization, urbanization and enhanced life 

style. Consequently, the overdependence and 

ever-increasing demand for electric energy has 

led to several rapid advancements in the power 

sector. Previously, vertically integrated utilities 

were used to operate the power grids, and the 

government mostly controls this regulated power 

system. Thus, both incurred expenditure and the 

resultant revenue of the power system are both 

handled by the government [1-3]. However, the 

excessive demand for power in recent times 

effectuated the deregulation and privatisation of 

electric power system. This in turn has 

contributed to the restructuring of the power 

system with the inclusion of numerous smaller 

generation plants, comprising of sustainable 

power sources to meet the booming number of 

loads [4]. As a result of excessive power 

requirements, transmission systems are operating 

beyond their thermal and stability limits, placing 

strain on the current power system architecture. 

Moreover, in a deregulated environment, the 

DISCOs, GENCOs and TRANCOs are not 

controlled by a common institution, instead 

different organizations manage these companies 

and the establishment of coordination between 

these companies is left to an ISO. The transactions 

made by the DISCOs and GENCOs are 

unpredictable, abrupt and ahead of time, resulting 

in transmission line congestion [5, 6]. The issue 

of transmission line congestion mainly occurs due 

to rise in load demand, generation outages and 

equipment failure. The vital task of relieving this 

congestion and ensuring a safe and secured 

working of power system, is entrusted to ISO. The 

major techniques followed by ISO to relieve 

congestion are cost free and not cost-free methods 

[7]. The former involves Flexible AC 

Transmission (FACTS) devices, transformer taps, 

network reconfiguration, phase shifters or 

congestion lines out-ageing. The latter entails 

approach like curtailment of loads, generation 

prioritization and generation rescheduling. In 

certain situations, ISO informs the consumers 

about the specific line congestion and facilitate 

load adjustment inside the limits of system 

constraints. In severe cases, the CM is carried out 

by physically restricting the transaction, 

irrespective of the inconvenience to consumers [8, 

9]. FACTS devices are regarded as technology 
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that, lowers transmission congestion and 

improves grid infrastructure use. The usage of 

FACTS controllers has some drawbacks, 

including challenges with placement, size, cost, 

and modelling that are ideal. In order to manage 

congestion in reorganized electricity markets, this 

article discusses the application and ideal position 

of the FACTS device series [10, 11]. Through the 

creation of an algorithm to improve working 

measure of contingency analysis as well as 

positioning and control of Thyristor-Controlled 

Series Compensator (TCSC) [12], and operation 

of TCSC for transmission line optimization and 

congestion is explored. The best location 

for TCSC [13] in terms of increasing power 

transmission efficiency, limiting steady-state 

instability, and preserving power system voltage 

stability. TCSC is used in power systems to 

enhance transient response and congestion 

control. The explanation of the objective models 

for minimising expense and load shedding 

involved optimising welfare of society, limiting 

load shedding, as well as increasing load served. 

Two generators and bus sensitivity factors were 

presented along with Particle Swarm 

Optimization (PSO) technique. However, PSO 

exhibits demerits including sensitivity to 

parameters, lack of diversity and premature 

convergence leading to inaccurate outputs [14]. In 

[15], Genetic algorithm is engaged for finding 

best generation schedule for CM in an 

unregulated power system but shows challenges 

in the improvement of congestion management 

performance. The Grey Wolf Algorithm (GWO) 

is employed for congestion management due to its 

ability of enhanced convergence speed yet gets 

trapped on local optimum value [16]. Firefly 

Algorithm (FA) is another metaheuristic 

algorithm employed for handling congestion 

management but exhibits inability in handling 

optimization problems with constraints [17]. The 

line overload problem during congestion 

management is eliminated in power system by 

grasshopper algorithm (GA), however, the 

inappropriate selection of parameters may lead to 

premature convergence of the algorithm [18]. The 

differential algorithm is adopted the hourly 

congestion management but demands increased 

consumption of resources leading to resource 

shortage [19]. Bat algorithm is also deployed for 

the congestion management in power systems but 

faces issues related to computational complexity 

[20].  Several studies introduce deep neural 

networks together with metaheuristic algorithms 

for congestion control in response to these 

problems. In [21], glow worm swarm 

optimization is adopted for the optimization of 

DCNN which in turn adjusts the weight 

initialization. Anyway, with the increase in data 

size, slight fluctuations occur in memory usage of 

the algorithm.  

In [22], atrous convolution algorithm is used for 

the optimizing of DCNN but the accuracy results 

attained are not high. In [23] swarm intelligent 

based algorithms are adopted for the optimizing 

of DCNN. However, these algorithms face issues 

related to convergence and accuracy. Considering 

these shortcomings, the novelty of the work 

engages a DCNN network with Improved Lion 

Optimization, which is a recent optimization 

strategy showing remarkable performance 

towards congestion management. 

Contributions of the study are, 

 An Improved LA optimized DCNN is 

proposed for relieving congestion in a 

deregulated environment. 

 The presented CM approach is tested for 

its effectiveness in IEEE 118-bus, 57-bus, 

and 30-bus systems. 

 The proposed methodology is effective in 

minimizing congestion cost and losses.  

 

PROPOSED SYSTEM MODELLING.  

A. Problem Formulation 

 

The primary goal is to lower the systems z cost, 

which is taken into account. 

Minimize  1

N n n n

k k k
k C P P

k
 

                        (1)                  

From above equation, rescheduling power cost in 

accordance with price bids at interval 𝑛 is 

represented as n

kc ,as incremental adjustment of 

generators active power is given by n

kP for 

interval n . KN  represent the number of buses 

used and the generation of maximum and 

minimum limits is denoted as max

kP  and min

kP

Subject to the limitations are listed as follows 

1

| || || | cos( )
n

gj dj J K jk i k jk

k

P P V V Y 


      (2) 

 
1
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1,2,...,

n

gj dj J K jk i k jk

k

Q Q V V Y

j n

  


   



  (3)                                                                         
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min max

gk gk gkP P P                 (4)                                        

ggkgkgk NkQQQ ,...,2,1maxmin      (5)                  

Here, ,j kV V denotes the voltage for thj bus and thk

bus respectively,  𝑌denotes the shunt admittance,

jk represents the admittance angle between thj   

bus and thk  bus,  .i k  denote bus voltage angle of 

the thi bus and thk  bus, 
,gj gjP Q denote the real and 

reactive powers for 𝑗 bus while,
,dj djP Q indicate a 

real and reactive load powers for 𝑗 bus,
gN denote 

the number of generators, min min,gk gkP Q denote the 

minimum value of real and reactive power of thk

bus, max max,gk gkP Q represent the maximum of real and 

reactive power of thk bus. The following 

additional limits are taken into account once the 

bus is linked to pumped storage units for lowering 

the system's congestion costs: 

24,0  neenee finalninitialn       (6)

 ptee nn 1                                         (7)

 
maxmin

ps

n

psPs PpP                    (8)

 
maxmin

Hs

n

HsHs PPP      (9) 

unl eee                                                 

(10) 

Here, min min,Ps HsP P and max max,Ps HsP P  represent the 

minimum and maximum values of power. 

B. Bus Sensitivity Factor (BSF) 

 

 BSF is defined as ratio of incremental changes 

occurring in thm power of the bus to an 

incremental change in real power flowing through 

bus "𝑖" which is linked to buses "𝑗" and "𝑘, " as 

shown below. On the basis of greatest negative 

sensitive indexes, BSF offers the best location for 

pumped hydro storage unit deployment. 

        
jki

m

m

p
BSF

p





                                      (11)                   

From the expression above, the degree to which 

the amount of real power changes in accordance 

with amount of real power injected at bus m in a 

transmission line is represented by i

mBSF .
jkP

indicates the incremental changes in real power 

that flows in bus 𝑖 which is connected between 𝑗 

and 𝑘 buses, 
pm represents an incremental 

change in thm power of the bus. 

 Equation (12) is used to derive BSF, as shown 

below

jk jk jk jk

jk j k j k

i k i k

P P P P
P V V

V V
 

 

   
        

   
 

(12)             
jk jk j jk k jk j jk kP a b c V d V           

(13)
jk jk j jk k jk j jk kP a b c V d V           (14)

 From Equation the expression for ,jk jka b  and
jkc

is given by, 

jksin( )jk j k jk k ja V V V         (15)

sin( )jk j k jk jk k jb V V V         (16)

cos( ) 2 cosjk k jk jk k j k jk jkc V Y V Y          (17)

cos( )jk j jk jk k jd V Y        (18) 

Here, ,j KV V  denotes the voltage across the 𝑗 and 𝑘 

buses,
jkY  represents equation (19) provides the 

Jacobian Matrix using Newton-Raphson (NR) 

technique. 

  11 12

21 22

J JP
J

J JQ V V

         
        

        
  (19) 

Here,  

      
1

11J P M P


                                 

(20) 

|| 1
1,2,..., ,

n

j jlm Pj n j s


                         

(21) 

            Hence, the expression of BSF becomes 

| |

i

m jk j jk jBSF a m b m        (22) 

        The Improved LA-optimized DCNN is 

employed for congestion management in this 

work and the presented approach is shown in 

Figure 1.  

C. Optimized DCNN with Improved Lion 

Algorithm (LA) for classification 

In this work, DCNN is adopted in which the 

automatic optimization of hyperparameters is 

carried out by improved LA. In Figure 2, the 

general flow diagram of DCNN with optimization 

is indicated. Here, back propagation is used for 

the learning process. The obtained prediction 

output from the fully connected layer is compared 

with an actual value and subsequently, the loss 

function calculates the error value. The Stochastic 

Gradient Update (SGD) function is used in the 

training procedure of DCNN. Consider, the n 
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samples of the training dataset and assume 𝑓𝑖(𝑥) 

as the loss function in which 𝑖 denotes the index 

and 𝑥 denotes the parameter vector. The objective 

function is given by, 

 

 Fig.1. Congestion management using Improved LA-optimized DCNN

1

1
( ) ( )

n

i

i

f x f x
n 

     (23) 

           The following expression denotes the 

objective function gradient at 𝑥. 

 

 
1

1
( ) ( )

n

i

i

f x f x
n 

        (24) 

 

               The computational cost for each 

independent variable iteration, if gradient descent 

is used, is given by ( )n An index  1,.........,i n is 

uniformly sampled at each iteration of SGD for 

updating 𝑥  by computing ( )if x . 

 

 ( )ix x f x         (25) 

 

                 Here, 𝜂 indicates the learning rate. 

 The DCNN structure used in the proposed work 

is AlexNet which is an updated architecture 

generating improved accuracy with less 

computational time. Table 1 represents the 

Alexnet DCNN layer architecture used in the 

proposed work. 

         The convolutional layer extracts the features 

from the data and is normalized by ReLU. 

Subsequently, the pooling layer of size 3×3 

reduces the number of sizes thereby minimizing 

the complexity. In this DCNN, categorical cross-

entropy is adopted as the loss function DCNNs are 

trainable architectures with biological inspiration 

that acquire on invariant aspects. Filter banks, 

certain non-linearities, and feature pooling layers 

are present in all stages of a DCNN. Multiple-

stage multilevel hierarchical features are learned 

by a DCNN. The combined input features 𝑓𝑒 in 

DCNN are characterised by a function as shown 

in Equation (26), where 𝑓𝑒 is given a size of

1 2m Xm and A indicates the 8-bit channel ranging 

from  0,............,250 . 

 

                                                                  Table 1 

Alexnet DCNN layer architecture 

Layers Filters Filter 

size 

Strides 

Convolutional 

layer 1 

Max. pooling 

96 11×11 

 

3×3 

4 

Convolutional 

layer 1 

Max. pooling 

256 5×5 

 

3×3 

1 

Convolutional 

layer 1 

Max. pooling 

384 3×3 

 

3×3 

1 

Convolutional 

layer 1 

Max. pooling 

384 3×3 

 

3×3 

1 

Convolutional 

layer 1 

Max. pooling 

256 3×3 

 

3×3 

1 

 

     1 2 ,: 1,..., 1,..., , ,Se i jlm m m A R i j fe           (26)        

(Considering filter 1 22 2 1g g
L

 
 , where the 

discrete convolution (∗) w h filter H is specified 
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by Equation (27) for the best image features 𝑓𝑒. 

𝐿 is modelled as per Equation (28), 

  1 2

1 2
, ,,

g g

i v u p v r up r v g u g
fe L L fe   
                    (27) 

 

 

Fig .2. Deep CNN. 
 

1 2 1 2

1 2 1 2

, ,

0,0

, ,

;g g g g

g g g g

L L

L

L L

   



 
 
 
 
 

      (28) 

A commonly used smoothing filter is the discrete 

Gaussian filter
( )HL  , which is shown in Eq. (29), 

where 𝜎 stands for "standard deviation of 

Gaussian distribution". 

 
2 2

( ) 2, 2

1
exp

22
H p r

p r
L 



 
  

 
  (29)  

Assume convolutional layer with feature maps 
( )

1

sn and output dimensions a ( ) ( )

2 3

s sn Xn The 𝑖𝑡ℎ 

feature map of 𝑠 layer is illustrated in expression 

30. The bias matrix and filter dimensions are 

given by ( )s

iW and ( )

,

s

i jL  that links 𝑖𝑡ℎ and 𝑗𝑡ℎ feature 

map of 𝑠 and (𝑠 − 1) layer. 

1
11

1

( ) ( ) ( ) ( 1)

, *
xns s s s

i i i j jv g
X W L X





      (30) 

The output feature map retains a dimension by 

utilising discrete convolution at specific locations 

on input feature maps and is expressed as 

( 1) ( ) ( 1) ( )

2 1 2 3 2 32 2s s s s s sn g n and n g n         (31) 

The convolutional layer with its membership 

function including multilayer perceptron is 

expressed as 

     
1

1 ( ) ( 1)

,1, , ,
*

xns s s s

i i i j jjp r p r p r
X W L X





    (32)

     
 

     

1

1 1 2

1 2
,1, ,

1

,
, ,

s
s s

s s

n g gs s

i i jj v g u gp r v u

s s

i j j
p r p v r u

W L

L X



  



 

  
(33) 

The position (𝑝, 𝑟)  achieved by output 

computation unit is illustrated in Equation 33. 

The trainable weight of network is represented as
( )

,

s

i jL and ( )s

iW indicates bias matrix. Consider fully 

connected layer as 𝑠. If s-1 is also fully 

connected s takes as input feature map ( 1)

1

sn  with 

size ( 1) ( 1)

2 3

s sn Xn  and is given by, 

 
( 1) ( 1) ( 1)
1 2 3

(s)

i

1

, , ,1 1 1 ,

X ( )

*
s s s

s s

i i

n n n s s

i j p r jj p r p r

f V with V

We X
  



  

 

  
               (34) 

, , ,*s

i j p rWe clarifies the weight which links unit at 

position  ,g h  in layer 1s   feature map and 𝑖𝑡ℎ 

unit in 𝑠. The weights are updated with the 

backpropagate of error in the network after the 

calculation of network error. The optimization 

algorithm updates the weights till the minimized 

value of error is obtained and the error does not 

get reduced further. For better prediction 

outcomes, it is preferable to make the values ideal 

rather than generating some random evaluation 

values. However, the automatic finding of 

hyperparameters of DCNN is crucial and requires 

the involvement of metaheuristic algorithms. The 

tuning in this work is done using the optimization 

idea, specifically, a novel tuning approach is 

presented. 

Solution Encoding and Objective Function 

 

        Fig. 3. Solution encoding. 

Figure 3 shows the solution provided by the 

suggested algorithm, where nu represents total 

number of weights. An objective function (𝑂𝐹) 

of research that is being presented is described in 

Equation (32), where 𝐸𝑟 denotes error. 

( )rOF Min E                                 (35)

1
( )

n A p

r i
E L L

N
                               (36) 
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From the above expression N indicates 

the number of samples, and actual and predicted 

outcomes of the ground truth table are specified 

as AL and PL  

 

 

Proposed Improved LA. 

 The Improved LA model is used in the work 

is presented to optimise a weight of DCNN. Here, 

the current LA method is enhanced so that it is 

Fig. 4. Adopted Improved LA Flow Diagram. 

 

capable of handling the difficult optimization 

problems. Self-improvement has generally been 

shown to be promising in conventional 

optimization techniques. The live nature of lion 

species served as the basis for LA model. It 

consists of four stages, including "mating, pride-

generating, improved territorial takeover and 

territorial defence”. The proposed Improved LA 

adopts the improved territorial takeover phase in 

which the lions are updated based on the 

maximum age of cubs. In contrast, conventional 

LA do not have specific updating process. The 

solution vector of Improved LA is referred as 

 1 2, ,....., MS S S S . 

Pride Generation. 

 

The pride formulation is initiated by nomadic 

lion, territorial lion, and lioness which are 

indicated as mals , ndS and fems the vector 

components are specified as ,mal nd

len lens s  and, fem

lens with 

1,2,3,...., ;len Len  that lies within the limits of 

random integers, when ˆ 1m .The length of lion is 

specified as Len  and variables are denoted by n̂

and m̂ .Simultaneously, when ˆ 1m  ,the 

expression for ( )tenV S is written by, 

m;m 1
Len

n;otherwise


 


                             (37)                               

   min max

lenV S ,len lenS S                      (38) 

         n%2 0                                     (39) 

                  
2

2

len 1
V S len

len

Len

len
len

S
 

 
 


                 (40) 

Fertility Estimation. 

If fems  and mals   become saturated, they may have 

reached a local or global optimum and so failed to 

find the ideal solution. In the proposed technique  

fem

fem d

len fem

len

S if len d
S

S otherwise




 

 


                                     

(41) 
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 max maxmin ,max ,fem

d d d dS S S   
 

                      

(42) 

The process of mating is performed when fems  is 

considered as fems . From the expressions above 

𝑑𝑡ℎand 𝑙𝑒𝑛𝑡ℎ component vectors of fems  is 

specified as fem

dS and fem

lens  . 

  2 10.1 0.05fem mal fem

d d d dS r S r S     
 

     (43) 

 The random constraints are specified by variables

1 2,r r and 𝑑, which are produced and lie between [ 

 0,1 and  1, Len , respectively. Also, female 

update process is indicated as . 

Matching 

Gender-based clustering occurs as a result of the 

crossover and mutation processes that occur 

during mating. Cubs are generated by mutation 

and crossover process and are referred as, cubss  

which are produced by cross over process and 
news by mutation process. Thus, a lioness gives 

birth to four cubs when it is pregnant, and another 

four cubs are created through the crossover 

process. These four cubs are used to carry 

out mutation procedure in order to create four 

further cubs. 

Lion Operators. 

  The territorial defensive and coalition 

developments are covered in survival fight. If the 

conditions in Equation (44 to 46) is satisfied is 
e ndS  selected. 

   e-nd malh S h S                                              

(44)      

   cubmale-ndh S h S                                                (45) 

laggardness, laggard is specified as arL and mals

,while  malh s  beyond rh   specifies the fitness 

reference. The sterility rate rst   indicates fems  

fertility. While max

r rSt St tolerance, the expression 

becomes 

   cubfeme-ndh S h S                                          (46)

 The nomadic coalition upgrade happens after the 

failure of ndS , while a pride update happens 

after failure of mals . 

Territorial Takeover. 

 The process of upgrading mals   and fems  based on 

maximum cub age maxA  takes place in this phase. 

In the proposed work, the territorial takeover uses 

the algorithm to upgrade mals and fems as mentioned 

in (47) and (48) which is absent in conventional 

LA. In other words, the territorial updating is 

based on size of male and female cubs and a 

random variable called rann . 

   cub cub cubmal fem femmalS S S ran n size S   
  

    (47)  

   cub cub cubfem mal malfemS S S ran n size S   
  

    (48) 

Termination. 

The design gets terminated only when 

Equations (49) and (50) are satisfied.  

maxit it                                                    (49) 

   mal opt

thh S h S er                          (50)

   Figure 4 shows the flow chart for the suggested 

Improved LA model.  From the expression above 

count of generation is indicated by 𝑖𝑡, which is set 

to zero at initial and further increased to 1, during 

the territorial takeover. maxit  and ther stands for 

maximum generation and error threshold, 

respectively. The list of hyperparameters for the 

evaluation selected with the help of improved LA 

is mentioned in Table 2.  

Table 2 

List of hyperparameters. 

Hyperparameters Range Optimal 

Value 

No. of epoch [1-200] 100 

No. of filters [1-400] 16 

Batch size [10-100] 32 

Pooling size [1×1-

7×7] 

2×2 

Filter size [1×1-

11×11] 

3×3 

 

   RESULTS AND DISCUSSION 

In this study, an Improved LA optimized DCNN 

is used for resolving congestion issue in 

unregulated environment. The optimized Deep 

CNN facilitates the active power rescheduling of 

generators with reduced congestion cost. Around 

500 loading scenarios are being generated among 

which 78% of patters are adopted for training and 

22% of patterns are adopted for testing. Out of the 

390 loading scenarios of training set, the number 
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of congested scenarios identified is 378 while the 

non-congested cases is 12. Among 110 loading 

scenarios of testing set, the number of congested 

loading scenarios is identified as 100 whereas the 

number of non-congested loading scenarios is 

identified as 10. An apparent power load, active 

power load and reactive power load are applied as 

inputs to DCNN in which the dimension of the 

input layer is given by 3×21×1. 

In order to apply power load, active power load 

and reactive power load as inputs, data requires 

pre-processing. Initially, the data has to be 

collected at regular intervals and further pre-

processed which involves removal of outliers and 

conversion of data into time-series format. The 

data could then be formatted into a tensor or array, 

where each row represents a time step and each 

column represents a feature, such as active power 

load. Finally, the formatted data can be fed as 

input to the DCNN.The proposed work is verified 

by implementing in MATLAB and is tested under 

variety of networks including IEEE 30-bus, IEEE 

57-bus and IEEE 118-bus. An upper voltage of 

the load bus is 1.1 p.u, while the lower voltage of 

the load bus is 0.9 p.u. Table 3 lists the test 

systems considered for evaluating the 

performance of Improved LA optimized DCNN 

for CM, while the congestion line details are 

presented in Table    4. 

Table 3 

Test System details 

Test system Modified IEEE 30-bus Modified IEEE 57-Bus IEEE 118-bus 

Test case 1A 1B 2A 2B 3 

Considered 

Contingency 

Line outage 

between 1 

and 2. 

Line outage 

between 1 and 

7. 

Reduction of line 

capacity from 50-35 

MW and 200 to 

175MW between 6-

12 and 5-6. 

Reduction of 

line capacity 

between lines 

2 and 3 from 

85 to 20 MW. 

Line outage 

between 5 and 

8. 

 

Table 4  

Congestion line flow details of test system 

T
es

t 

C
a
se

  

1A 

 

1B 

 

2A 

 

2B 

 

3 

C
o
n

g
es

t

ed
 

L
in

es
 

 

 

1-7 

 

 

7-8 

 

 

 

1-2 

 

 

2-8 

 

 

2-9 

 

 

5-6 

 

 

6-12 

 

 

2-3 

 

 

16-17 

 

 

30-17 

 

 

8-30 

L
in

e 
F

lo
w

 

(M
W

) 
B

ef
o

re
 

C
M

 

 

 

147

.5 

 

 

140.2 

 

 

314 

 

 

97.8 

 

 

103.6 

 

 

188.7 

 

 

49.5 

 

 

36.6 

 

 

209.2 

 

 

580.2 

 

 

363.5 

A
ft

er
 

C
M

  

 

130 

 

 

123.5 

 

 

130 

 

 

61.4 

 

 

64.39 

 

 

168.4 

 

 

16.8 

 

 

16.7 

 

 

97.6 

 

 

496.8 

 

 

143 

S
p

ec
if

ie
d

 

li
n

e 
li

m
it

 

(M
W

) 

 

 

130 

 

 

130 

 

 

130 

 

 

65 

 

 

65 

 

 

175 

 

 

35 

 

 

20 

 

 

175 

 

 

500 

 

 

175 

  



PROBLEMELE ENERGETICII REGIONALE  3(59) 2023 

 131 

IEEE 30-Bus Test System 

For comprehending the potential of proposed DCNN 

based CM approach, a revised version of IEEE 30-

bus system that comprises of 24 load buses, 6 

generator buses and 41 transmission lines is 

considered. The two different cases considered here 

are: Case 1A – power outage causes congestion 

between lines 1-7 and 7-8; Case 1B – load rises to 

50% at every bus and the lines 1-2, 2-8 and 2-9 are 

congested. Table 3 gives the details about the 

obtained results from which it is noted that the 

proposed work generates improved outputs of 

18.707 for case1A and 161.14 for case 1B.

Table 5 

Test system results 

TRRG-Total Real power Rescheduling Generator, TC-Total  

 

 

Fig. 5. Case 1A simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-

power and (d) Voltage magnitude. 

The simulation results for case 1A are provided in 

Figure 5. On analyzing the figure, it is detected that a 

congestion cost is minimum for the proposed CM 

approach using Improved LA optimized DCNN.  

C
as

e 
1

A
 

Techniques ,$ /TC h  1GP  2GP  3GP  4GP  5GP  6GP  TRRG 

SA [24] 719.86 -9.076 3.133 3.234 2.968 2.954 2.443 23.809 

RSM [24] 716.25 -8.808 2.647 2.953 3.063 2.913 2.952 23.33 

PSO [24] 538.95 -8.61 10.4 3.03 0.02 0.85 -0.01 22.93 

FA [25] 511.87 -8.778 15 0.106 0.065 0.1734 -0.618 24.74 

Proposed 421.58 -8.596 7.57 0.352 1.096 0.568 0.5228 18.707 

C
as

e 
1
B

 

SA [24] 6068.7 - - - - - - 164.53 

RSM [24] 5988 - - - - - - 164.5 

PSO [24] 5335.5 - - - - - - 168 

FA [25] 5304.4 -8.579 75.99 0.057 42.99 23.83 16.51 167.9 

Proposed 5238.9 -9.001 62.9 34.24 2.059 29.45 23.47 161.14 
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Further, real-power losses are significantly reduced to 

12.65 MW from 16.13 MW, indicating the 

effectiveness of the proposed methodology. The 

voltage magnitude is also maintained within a 

reasonable range (0.9 to 1.1) after CM 

 

 
 

Fig. 6. Case 1B simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-

power and (d) Voltage magnitude.

 

 

From Figure 6, which gives the simulation outcomes 

for case-1B, deduces that the congestion cost is 

comparatively lower for the proposed DCNN based 

CM approach. In this case, increase in load along 

with the outage of line between 1 and 7 results in 

overloading Moreover, the system losses are also 

reduced to 14.59 MW from 37.24 MW after CM 

using Improved LA optimized DCNN.  

 

IEEE 57-Bus Test System 

Next, a revised topology of IEEE 57-bus test system 

considered for CM is made up of80 transmission 

lines, 50 load buses and7 generator buses. Its reactive 

and real power values, 336 MVAR and 1250.8 MW 

respectively. Moreover, the details and results of the 

two cases coming under this test system is provided 

in Table 6.  

Table 6 

Test system results. 

C
as

e 
2

A
 

Techniques 
,$ /TC h

 
1GP  2GP  3GP  4GP  5GP  6GP  7GP  TRRG 

SA [24] 7116.8 76.4 0 -2.64 9.98 -87.3 0 0 172.9 

RSM [24] 7876.4 59.3 0 38.7 -48.6 -63.7 0 0 197.3 

PSO [24] 6735.2 24.7 13.5 8.54 -6.49 -82.3 0 39.7 164.4 

FA [25] 6214.4 5.72 2.75 0.63 0.21 -39.2 -35.1 62.2 146.82 

Proposed 5324.6 -0.05 -11.7 -5.81 -45.2 -51.3 -34.8 -0.53 144.57 

C
as

e 
2
B

 

SA [24] 4274.3 - - - - - - - 98.74 

RSM [24] 4123.6 - - - - - - - 89.67 

PSO [24] 3856.1 - - - - - - - 76.43 

FA [25] 2987.9 0.37 -27.5 31.4 0.44 -2.32 -1.87 -0.63 65.87 

Proposed 2012.3 0.76 0.08 22.0

44 

0.17 -10.5 -0.00 16.07 49.583 
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Fig. 7. Case 2A simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-

power and (d) Voltage magnitude. 

  

The simulation outcomes for case 2A are 

illustrated in Figure 7, In case 2A, for lines 6-12 

and 5-6, line limits are lessened from 50 𝑀𝑊 to 

35 𝑀𝑊 and 200 𝑀𝑊 to 175 𝑀𝑊 respectively.  

With the occurrence of congestion, there is an 

overloading between lines 6-12 and 5-6. After 

CM using the proposed methodology in case 2A, 

the system loss is significantly reduced to 24.558 

MW from 69.64 MW.   

 
 

 
 

Fig. 8. Case 2B simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-

power and (d) Voltage magnitude. 

whereas simulation outcomes for case 2B are 

illustrated in Figure 8. In case 2B, line overloading is 

created by reducing line limit to 20 MW from 85 MW 

between lines 2-3. From analyzing Table 4, it is 
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observed that the proposed approach delivers 

comparatively better performance in Case 2A also. 

 In this case the system losses are greatly reduced to 

28.22 MW from a primary value of 78.23 𝑀𝑊 before 

CM.  On the whole, the violation of overloading 

lines is alleviated by the optimized real-power 

rescheduling. 
IEEE 118-Bus Test System 

The proposed DCNN based CM is also evaluated for 

its effectiveness in a larger test system by deploying 

it in a revised topology of 118-bus test system, made 

up of 54 generator buses, 64 load buses and one 

186transmission lines. In this case, the lines between 

5 and 8 are disconnected, while the loads between 

lines 20 and 11 are increased 1.57 times. Figure 8 

gives the simulation resultsforCase3 

Fig. 9. Case 3 simulation results (a) Convergence profile and (b) voltage magnitude. 

 In this case, the total system loss becomes 

230.505 MW after CM using DCNN. The value 

of system loss before CM is 277.301 MW. Thus,   

it is significantly apparent that the proposed 

DCNN methodology is effective at minimizing 

congestion in any test system, regardless of its  

size.  Figure 10 represents the comparison of 

convergence in terms of cost and iteration. 

From the curve it is clear that the Improved 

LA exhibits rapid convergence rate when 

compared to conventional LA. 

 

Fig. 10. Comparison of convergence. 

 

 

 

Figure 11 represents the comparison of 

performance error obtained using CNN, 

DCNN and Improved LA optimized DCNN 

related to mean absolute error (MAE), mean  
  

Fig. 11. Comparison of performance error. 
squared error (RMSE) and root mean squared 

error (RMSE). The comparison outputs 

indicate reduced error for the proposed neural 

network indicating improved computational 

performance. 
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Table 7 

Comparison of generator rescheduling for IEEE 30-bus system 

Networks Outputs G1 G2 G3 G4 G5 G6 

Cascaded 

DCNN[26] 

Actual  40.882 54.409 16.485 21.747 16.083 29.902 

Predicted 40.469 54.222 16.299 21.692 16.073 29.775 

% Error 1.008 0.344 1.128 0.253 0.064 0.307 

DNN[27] Actual  179.098 45.973 21.831 23.637 19.086 - 

Predicted 179.111 46.416 21.605 23.640 18.901 - 

% Error 0.007 0.964 1.038 0.014 0.970 - 

Proposed 

ILA-DCNN 

Actual  161.149 55.946 19.627  22.676 18.384 32.916 

Predicted 161.146 55.740 18.707 22.671 18.342 32.775 

% Error 0.003 0.206 0.920 0.005 0.042 0.141 

 

 Table 6 represents the comparison of the 

proposed ILA-DCNN for generator 

rescheduling with existing works. The listed 

values indicate that the proposed work 

outperforms other ones with enhanced 

prediction outputs indicating reduced error 

percentage. 
 

CONCLUSION. 

This study suggests a novel robust methodology 

for CM in an unregulated open access electricity 

environment. In order to satisfy several electrical 

constraints, problem was developed as multiple-

objective function, with losses and congestion 

costs as vital factors. Conventionally, FACTS 

devices or nature-inspired algorisms were 

prominently employed for CM in many works. 

Meanwhile, in this work, DCNN is chosen for 

congestion minimization in an unregulated 

environment for solving the tasks of issues in 

congestion management due to uncertainties in  

 

 

load. The working of the DCNN is enhanced 

further by using Improved LA optimization. The 

proposed DCNN-based generator rescheduling 

approach is put to test for its performance in three 

different test systems of varied sizes. Moreover, 

its performance is evaluated by analogizing with 

other existing methodologies in these test systems. 

The proposed work is simulated in MATLAB and 

on the basis of the obtained simulation outcomes, 

it is evident that the proposed Improved LA 

optimized DCNN displays phenomenal 

performance in minimizing congestion losses at 

minimum congestion costs. Moreover, it also 

outperforms other techniques in terms of its 

superior performance in managing congestion. 

The future extension of this work can include the 

adoption of hybrid optimization algorithms for the 

enhancement of neural network parameters. 

Moreover, the effects of optimization over multi-

objective functions have to be analyzed in a 

detailed manner. 

Conflict of interest. The authors declare that they 

have no conflicts of interest. 
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