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Abstract. The technical issue of congestion, which is predominantly found in deregulated power
systems, is caused by the failure of transmission networks to satisfy load power demands. This failure
is primarily caused due to an increase in loads or loss of transmission lines or generators in modern
restructured power networks. This work introduces a CM approach using Deep Convolution Neural
Network (DCNN) for minimizing congestion and supporting Independent System Operators (I1SOs).
The purpose of the work is to generate enhanced prediction outputs for congestion management with
reduced error values. These objectives were achieved through the actual power rescheduling of
generators. The proposed work adopts DCNN which is optimized using an Improved Lion Algorithm
(LA) and aids in providing significant outcomes for congestion management with reduced error. By
implementing customized IEEE 57-bus, IEEE 30-bus, and IEEE 118-bus test systems, the suggested
approach has been successfully verified for its performance on test systems of varied sizes. This analysis
incorporates restrictions such as line loads, bus voltage influence, generator, line limits, etc. The most
important results for the test system indicating convergence profile, congestion cost, and change in real-
power and voltage magnitude are obtained by the simulation in MATLAB, and on the basis of the
obtained simulation outcomes, it is evident that the proposed Improved Lion Algorithm optimized Deep
Convolution Neural Network displays phenomenal computation performance in minimizing congestion
losses at minimum congestion costs. When compared to several contemporary optimization techniques,
the suggested technique performs better in terms of congestion cost and losses by generating improved
prediction outputs with reduced errors.
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Controlul congestiei folosind o retea neuronali de convolutie profunda optimizata intr-un mediu
dereglementat
Dhanadeepika B., Vanithasri M.2, Chakravarthi M.

Universitatea Annamalai, India, Tamil Nadu, ?Vasavi College of Engineering, Telangana, India.
Rezumat. Problema tehnicd a congestiei, care se gaseste predominant in sistemele de energie dereglementate, este
cauzata de esecul retelelor de transport de a satisface cerintele de putere a sarcinii. Aceastd defectiune este cauzata
in primul rand din cauza cresterii sarcinilor sau a pierderii liniilor de transport sau generatoarelor din retelele de
energie restructurate moderne. Scopul lucrdrii este de a genera rezultate de predictie imbunatatite pentru
gestionarea congestiei cu valori reduse de eroare. Aceste obiective au fost atinse prin reprogramarea efectiva a
puterii generatoarelor. Lucrarea propusd adoptd DCNN, care este optimizat folosind un algoritm Lion (LA)
imbunatatit si ajuta la furnizarea de rezultate semnificative pentru gestionarea congestiei cu erori reduse. Prin
implementarea sistemelor de testare personalizate IEEE 57-bus, IEEE 30-bus si IEEE 118-bus, abordarea sugerata
a fost verificatd cu succes pentru performanta sa pe sisteme de testare de dimensiuni variate. Aceastd analiza
incorporeaza restrictii, cum ar fi sarcinile de linie, influenta tensiunii magistralei, generatorul, limitele de linie etc.
Cele mai importante rezultate pentru sistemul de testare care indica profilul de convergenta, costul de congestie si
modificarea puterii reale si a marimii tensiunii sunt obtinute prin simulare in MATLAB si pe baza rezultatelor
simularii obtinute, este evident ca Reteaua neuronald de convolutie profunda optimizata cu algoritmul imbunatatit
Lion afigseaza performante de calcul fenomenale in reducerea la minimum a pierderilor de congestie la costuri
minime de congestie. In comparatie cu mai multe tehnici de optimizare contemporane, tehnica sugerati are
performante mai bune in ceea ce priveste costul de congestie si pierderile prin generarea de rezultate de predictie
imbunatatite cu erori reduse.

Cuvinte-cheie: controlul congestiei, algoritm leu imbunatatit, putere dereglementata.
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YrnpapieHue neperpy3kaMi ¢ HCIOJIb30BAHHEM ONTHMU3HPOBAHHOI HEliPOHHOI ceTH IiIy00Koil CBepTKH
B JieperyJupyemoii cpeae
Oxananeenuxa b.!, Banurxacpu M.2, Yakpasaprxu M.°
1YHI/IBepCI/ITeT Annamanau, Unaus, Tamun Hany, 2Bacasu WNuxenepnslil komnenx, Muaus, Tenanrana

Annomayua. TexHudeckas mpobieMa Ieperpy3kd, KOTOpas B OCHOBHOM BCTPEYAcTCsl B HEPETYIHPYEMbIX
9HEProCUCTEMAaX, BBI3BAHA HECIIOCOOHOCTHIO IEPENAIOIINX CETEH yHOBIETBOPHTH HOTPEOHOCTH B MOIIHOCTH
Harpy3ku. OTOT cOOH B EPBYIO OUYEPEb BBI3BAH YBEIMUCHNEM HArpy3KH WM MOTEPEH JIMHUN 3JIEKTPONEpEaatdn
WM TEHEPATOPOB B COBPEMEHHBIX PECTPYKTYPHUPOBAHHBIX 3JIEKTPUIECKUX CETAX. TakuM 0Opa3omM, ympaBieHHUE
neperpy3skamu (YII) cunraercst He3aMEHUMBIM acIIEKTOM B HBIHELITHIOKO STIOXY JI€peryIUpOBaHUsl, HOCKOJIBKY OHO
obecrieunBaeT OecnepeOoitHy0 paboOTy cucTeMbl Tepenadyd. B a3roit paborte mpencraeinen moaxon YII ¢
UCIIONIb30BaHUEM HEHpOHHOHU ceTu TiayOokoi cBepTku (DCNN) Ui MUHMMU3aUUH TEPErpy3KH U MOAJIEPIKKU
He3aBUCHMBIX cucTeMHBbIX onieparopoB (HCO). Liens paboTkl COCTOUT B TOM, 4TOOBI T€HEPHPOBATH PaCIIMPEHHbIC
BBIXO/IHBIE JaHHbIE TPOTHO3UPOBAHUS JUIS YIIPABICHUS IIEPErPy3KaMHU C YMEHBIICHHBIMU 3HAUYSHUSIMH OIIHUOOK.
OTH 1eny ObUTM JOCTUTHYTHI 32 CHET (haKTUUECKOTo NepepacipeaesIeH st MOITHOCTH reHeparopos. [Ipeanaraemas
pabota ucronszyer DCNN, KOTOPBIH ONTIMU3UPOBAH C MCIOIb30BAHUEM YIYYIIEHHOTO JIbBHHOTO aJIl'OpPUTMa
(YJIA) u momoraer obGecreynTh 3HAYUTEIBHBIC PE3YIBTATHI IS YIIPABJICHUS TEPETPY3KOi ¢ YMEHBIICHHON
ommoOkoi. Ilyrem peanmzannu HacTpamBaeMbix cucteM tectuposanus ¢ muHoi IEEE 57, IEEE 30 u IEEE 118
MPEeTIOKEHHBIH MOAX0J OBII YCHEIIHO NMpOoBepeH Ha 3(Q(EKTUBHOCT HA TECTOBBIX CHCTEMaxX pa3JIMUHBIX
pa3MepoB. DTOT aHaNIN3 BKIIIOYACT B ce0s TaKMe OTpaHUYCHHUS, KaK Harpy3Kka Ha JIMHHIO, BIMSIHUE HAIIPSHKCHUS HA
IIMHE, TeHepaTop, OTPaHWYCHUS Ha JUHUIO U T. 1. Hamboiee BaKHbIE Pe3yabTaThl IS TECTOBOW CHCTEMBI,
YKa3bIBaronye Ha HpO(i)I/IJ'H) KOHBEPICHIUU, CTOUMOCTb MNEPETPY3KU U HU3MCHCHHUC peaﬂbHOﬁ MOIIHOCTH H
BEJIMYMHBI HANPSDKEHHUS, TTONTydeHb! TyTeM MojenupoBanus B MATLAB, u Ha 0OCHOBE TOTy4eHHBIX Pe3yIbTaTOB
MO/JICIUPOBAHMS CTAHOBUTCSI OYEBUIHBIM, UTO MPEUIOKEHHAS YIIydllleHHass HeHpOHHAsl ceTh ITyOOKOH CBEPTKH,
ONTHMU3UPOBaHHas1 ¢ moMouiblo YJIA, neMoHcTpupyeT (eHOMEHATbHYIO IPOU3BOJUTEILHOCTD BEIUUCICHUI IPH
MHUHHMMAaJIbHBIX TOTEPSAX H3-3a IMEpEerpy3Kd MpU MUHUMAJIBHBIX 3aTpaTax Ha neperpy3ky. Ilo cpaBHeHuio c
HECKOJILKUMH COBPEMEHHBIMH METOJaMH ONTHMH3ALNH TIPEUIaraeMbelii METOA paboTaeT JIydIle ¢ TOUYKU 3pEHUS
CTOMMOCTH NEpPErpy3KH U MOTEPh 3a CYET CO3JaHUS YNy4IICHHBIX BBIXOAHBIX JAHHBIX NPOTHO3HPOBAHUS C
MEHBIIINM KOJIMYECTBOM OIITHOOK.

Knruegvie cnosa: ynpapieHue neperpy3kaMu, yIyqlIeHHBIH JIbBUHBINA aITOPUTM, HEPETYIHPYEMasi MOIHOCTb.

INTRODUCTION controlled by a common institution, instead
different organizations manage these companies
and the establishment of coordination between
these companies is left to an ISO. The transactions
made by the DISCOs and GENCOs are
unpredictable, abrupt and ahead of time, resulting
in transmission line congestion [5, 6]. The issue
of transmission line congestion mainly occurs due
to rise in load demand, generation outages and
equipment failure. The vital task of relieving this
congestion and ensuring a safe and secured
working of power system, is entrusted to 1ISO. The
major techniques followed by ISO to relieve
handled by the government [1-3]. However, the congestion are cost free and not cost-free methods

. ; : [7]. The former involves Flexible AC
excessive demand for power in recent times Transmission (FACTS) devices, transformer taps
effectuated the deregulation and privatisation of . . ’ . Ps,
electric power system. This in turn has network reconfiguration, phase shifters or

contributed to the restructuring of the power gon?(f;é'ﬁ nlillgne(?urc::ﬁ-ri%?:tn%f Tgae ds!attegn:rr;i?(l)lrsl
system with the inclusion of numerous smaller PP ' 9

generation plants, comprising of sustainable prioritization and generation rescheduling. In

power sources to meet the booming number of cgrtam hS|tuat|o_?_s, II.SO mform_s the é:ofnsqlr_ners
loads [4]. As a result of excessive power ? OdUI t d'e SPeCITIC. m.% conhges'i!oq an faC| ltate
requirements, transmission systems are operating oa a_Justment Inside the |m|t§ 0 §ystem
beyond their thermal and stability limits, placing constraints. In severe cases, the CM is carried out

strain on the current power system architecture. ?r)rles zng‘/lgglfht/he irnes;rr:sggﬁe ncg][?) cogsgﬁqa:rt;o[g’
Moreover, in a deregulated environment, the P '

DISCOs, GENCOs and TRANCOs are not 9]. FACTS devices are regarded as technology

Electric energy is the driving force behind the
functioning of the modern world and its rise in
prominence is mainly because of
industrialization, urbanization and enhanced life
style. Consequently, the overdependence and
ever-increasing demand for electric energy has
led to several rapid advancements in the power
sector. Previously, vertically integrated utilities
were used to operate the power grids, and the
government mostly controls this regulated power
system. Thus, both incurred expenditure and the
resultant revenue of the power system are both
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that, lowers transmission congestion and
improves grid infrastructure use. The usage of
FACTS controllershas some  drawbacks,
including challenges with placement, size, cost,
and modelling that are ideal. In order to manage
congestion in reorganized electricity markets, this
article discusses the application and ideal position
of the FACTS device series [10, 11]. Through the
creation of an algorithm to improve working
measure of contingency analysis as well as
positioning and control of Thyristor-Controlled
Series Compensator (TCSC) [12], and operation
of TCSC for transmission line optimization and
congestion is explored. The best location
for TCSC [13] in terms of increasing power
transmission efficiency, limiting steady-state
instability, and preserving power system voltage
stability. TCSC is used in power systems to
enhance transient response and congestion
control. The explanation of the objective models
for minimising expense and load shedding
involved optimising welfare of society, limiting
load shedding, as well as increasing load served.
Two generators and bus sensitivity factors were
presented along with  Particle  Swarm
Optimization (PSO) technique. However, PSO
exhibits demerits including sensitivity to
parameters, lack of diversity and premature
convergence leading to inaccurate outputs [14]. In
[15], Genetic algorithm is engaged for finding
best generation schedule for CM in an
unregulated power system but shows challenges
in the improvement of congestion management
performance. The Grey Wolf Algorithm (GWO)
is employed for congestion management due to its
ability of enhanced convergence speed yet gets
trapped on local optimum value [16]. Firefly
Algorithm (FA) is another metaheuristic
algorithm employed for handling congestion
management but exhibits inability in handling
optimization problems with constraints [17]. The
line overload problem during congestion
management is eliminated in power system by
grasshopper algorithm (GA), however, the
inappropriate selection of parameters may lead to
premature convergence of the algorithm [18]. The
differential algorithm is adopted the hourly
congestion management but demands increased
consumption of resources leading to resource
shortage [19]. Bat algorithm is also deployed for
the congestion management in power systems but
faces issues related to computational complexity
[20]. Several studies introduce deep neural
networks together with metaheuristic algorithms
for congestion control in response to these
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problems. In [21], glow worm swarm
optimization is adopted for the optimization of
DCNN which in turn adjusts the weight
initialization. Anyway, with the increase in data
size, slight fluctuations occur in memory usage of
the algorithm.

In [22], atrous convolution algorithm is used for
the optimizing of DCNN but the accuracy results
attained are not high. In [23] swarm intelligent
based algorithms are adopted for the optimizing
of DCNN. However, these algorithms face issues
related to convergence and accuracy. Considering
these shortcomings, the novelty of the work
engages a DCNN network with Improved Lion
Optimization, which is a recent optimization
strategy showing remarkable performance
towards congestion management.

Contributions of the study are,

e An Improved LA optimized DCNN is
proposed for relieving congestion in a
deregulated environment.

The presented CM approach is tested for
its effectiveness in IEEE 118-bus, 57-bus,
and 30-bus systems.

The proposed methodology is effective in

minimizing congestion cost and losses.

PROPOSED SYSTEM MODELLING.

A. Problem Formulation

The primary goal is to lower the systems z cost,
which is taken into account.

Minimize " ¥, C7 (AR") AR (1)

From above equation, rescheduling power cost in
accordance with price bids at interval n is
represented asc; ,as incremental adjustment of
generators active power is given by AR for
intervaln. N, represent the number of buses
used and the generation of maximum and
minimum limits is denoted as P™ and P™
Subject to the limitations are listed as follows

—Fy :ZWJ IVie 1Y [c0s(8; =0, —6y) (2)

k=1

ng

Qu =Qy = 2V, Vi 1Yy 1€0s(8, =5, =0, ), (3)
k=1
j=12,..,n
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min max
P <Py <Py

Q" <Qu <Qi*k =1,2,..., N,

(4)
()

Here, V, .V, denotes the voltage for j*"bus andk"

bus respectively, Ydenotes the shunt admittance,
6, represents the admittance angle between j"

bus andk™ bus, &,.5, denote bus voltage angle of
thei” bus andk™ bus, P, Q,denote the real and
reactive powers for j bus while, P, Q, indicate a
real and reactive load powers for j bus, N, denote
,Pi", Qi denote the
minimum value of real and reactive power of k"
bus, P, Qg™ represent the maximum of real and

1 Pgk
reactive power of k"bus. The following
additional limits are taken into account once the
bus is linked to pumped storage units for lowering
the system's congestion costs:

the number of generators

en — einitialn — O,en — efinalr.| — 24 (6)

en+1 :en+t(77p) (7)
Pot" < pp, < P (8)

RI" <PL <P (9)

e <e"<e

(10)

Here, P, P™and P™,PT™ represent the

minimum and maximum values of power.

B. Bus Sensitivity Factor (BSF)

BSF is defined as ratio of incremental changes
occurring in  m"power of thebus to an
incremental change in real power flowing through
bus "i" which is linked to buses "j"and "k," as
shown below. On the basis of greatest negative
sensitive indexes, BSF offers the best location for
pumped hydro storage unit deployment.

APy,
Ap,

BSF! = (11)

From the expression above, the degree to which
the amount of real power changes in accordance

with amount of real power injected at bus m in a
transmission line is represented by BSF,.AP,

indicates the incremental changes in real power
that flows in bus i which is connected between j
and k buses, A, represents an incremental

change in m" power of the bus.
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Equation (12) is used to derive BSF, as shown
below

Py Py P, oP,
AP, = AS; + Ao, + AV, + AV,

00, 00, oV, ;
(12) AP, =a, AS, +by AS, +C, AV, +d AV,

(13) AP, =2, AS, +b, A5, +C, AV, +d, AV,  (14)

From Equation the expression fora, b, andc,
IS given by,

a, =V, sin@, +5,-5;) (15)

by =V V.V, sin(@, +5,-5,) (16)

Cy =V, Y, cos(6, +6, —5;) -, Y, cosd, (17)

d, =V,Y, cos(6, +5,—-5,) (18)

jlk

Here,V;,V, denotes the voltage across the j and k
buses, Y, represents equation (19) provides the
Jacobian Matrix using Newton-Raphson (NR)

e )

25 =[2,]*[4P]=[M][aP]
(20)

AP
AQ

AS
AV

‘]ll
‘]21

J12
‘]22

AS
AV

] (19)

Here,

AS; = ZlelePJ =12,...,n,j#s
(21)
Hence, the expression of BSF becomes

BSF, =a,m, +b;m, (22)

The Improved LA-optimized DCNN is
employed for congestion management in this
work and the presented approach is shown in
Figure 1.

C. Optimized DCNN with Improved Lion
Algorithm (LA) for classification

In this work, DCNN is adopted in which the
automatic optimization of hyperparameters is
carried out by improved LA. In Figure 2, the
general flow diagram of DCNN with optimization
is indicated. Here, back propagation is used for
the learning process. The obtained prediction
output from the fully connected layer is compared
with an actual value and subsequently, the loss
function calculates the error value. The Stochastic
Gradient Update (SGD) function is used in the
training procedure of DCNN. Consider, the n
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samples of the training dataset and assume f;(x)
as the loss function in which i denotes the index

POWER LIMIT
VIOLATION IN LINE

1

CONGESTION |

TOVLNO

and x denotes the parameter vector. The objective
function is given by,

VALIDATION OF
CONGESTION COST

SA

RSM

A\ 4

PSO

FA

ILA

MINIMIZATION OF
CONGESTION COST BY
RESCHEDULING

PROPOSED IMPROVED LION
ALGORITHM

NO POWER LIMIT VIOLATION

NO CONGESTION

3 y 3

CONSTRAINTS

POWER LIMITS | POWER BALANCE

RESCHEDULING COST

BEFORE ILA

Fig.1. Congestion management using Improved LA-optimized DCNN

1 n
FO=22100 (29
i=1
The following expression denotes the
objective function gradient at x.

VE () = %ivri )  (24)

The computational cost for each
independent variable iteration, if gradient descent
is used, is given by O(n) An indexi e {1, .n}is
uniformly sampled at each iteration of SGD for
updating x by computing Vf, (x) .

X < X—nVf (X) (25)
Here, n indicates the learning rate.

The DCNN structure used in the proposed work
is AlexNet which is an updated architecture
generating improved accuracy with less
computational time. Table 1 represents the
Alexnet DCNN layer architecture used in the
proposed work.

The convolutional layer extracts the features
from the data and is normalized by ReLU.
Subsequently, the pooling layer of size 3x3
reduces the number of sizes thereby minimizing
the complexity. In this DCNN, categorical cross-
entropy is adopted as the loss function DCNNSs are
trainable architectures with biological inspiration
that acquire on invariant aspects. Filter banks,
certain non-linearities, and feature pooling layers
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are present in all stages of a DCNN. Multiple-
stage multilevel hierarchical features are learned
by a DCNN. The combined input features fe in
DCNN are characterised by a function as shown
in Equation (26), where fe is given a size of
m,Xm,and A indicates the 8-bit channel ranging

from {0,......... , 250} .
Table 1
Alexnet DCNN layer architecture
Layers Filters | Filter | Strides
size
Convolutional 96 11x11 4
layer 1
Max. pooling 3%x3
Convolutional 256 5x5 1
layer 1
Max. pooling 3%3
Convolutional 384 3%x3 1
layer 1
Max. pooling 3x3
Convolutional 384 3x3 1
layer 1
Max. pooling 3%3
Convolutional 256 3x3 1
layer 1
Max. pooling 3%3
Img, :{1,...m }x{L...m} >AcR,(i,j)>fe, (26)
(Considering ~ filter L e %% where the

discrete convolution (*) w h filter H is specified
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by Equation (27) for the best image features fe.
L is modelled as per Equation (28),

g
( fe * L = Zv 0 ZUZ —0, LV u p+v r+u (27)
CONVOLUTION [, PooLING ~ FULLY !
CONECTED SOFTMAX
INPUT GENERATED
- - W - = OUTPTS
FIND NEW —
HYPERPARAMETER | = MELT‘J(‘;HO%“}E\TIIC - E‘{ﬁlﬁé‘s}-\
AND TRAIN AGAIN ’ L
Fig .2. Deep CNN.
L‘gl gz. L—gp—gz
Loo (28)

91,-92 91,92

A commonly used smoothing filter is the discrete

Gaussian filter L, ,, , which is shown in Eq. (29),

where o stands for "standard deviation of
Gaussian distribution".

1
(LH(G))“ B 270° exp(

Assume convolutional layer with feature maps
n®and output dimensions an{®Xn{® The ith
feature map of s layer is illustrated in expression
30. The bias matrix and filter dimensions are
given byw,® and L{*) that links ith and jth feature

map of s and (s — 1) layer.

XO =W+ " LY (30)
The output feature map retains a dimension by
utilising discrete convolution at specific locations
on input feature maps and is expressed as

nt? —2g° =nPand n{™ -2g; =n®  (31)
The convolutional layer with its membership
function including multilayer perceptron is

expressed as
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(X7),, =), + 20, (L =x ) (32)

CTRDINES SIS SR i (L9

(), (),

The position (p, ) achieved by output
computation unit is illustrated in Equation 33.
The trainable weight of network is represented as
L andw, indicates bias matrix. Consider fully

connected layer as s. If s-1 is also fully
connected s takes as input feature map n®™ with

size n{YXn{and is given by,

" (33)

X® = f(\/s)withvs =

(1)

1 2y

(34)

nis D

B  We **

ijr

(Xfil)p,r

We= . clarifies the weight which links unit at

ij,p.r
position(g,h) in layers—1 feature map and ith

unit in s. The weights are updated with the
backpropagate of error in the network after the
calculation of network error. The optimization
algorithm updates the weights till the minimized
value of error is obtained and the error does not
get reduced further. For better prediction
outcomes, it is preferable to make the values ideal
rather than generating some random evaluation
values. However, the automatic finding of
hyperparameters of DCNN is crucial and requires
the involvement of metaheuristic algorithms. The
tuning in this work is done using the optimization
idea, specifically, a novel tuning approach is
presented.

Solution Encoding and Objective Function
s

Figure 3 shows the solution provided by the
suggested algorithm, where nu represents total
number of weights. An objective function (OF)
of research that is being presented is described in
Equation (32), where Er denotes error.

Wel Wez

We,,,

Fig. 3. Solution encoding.

OF = Min(E,)

L, a go
—ﬁzi(L L")

(35)
(36)
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From the above expression N indicates
the number of samples, and actual and predicted
outcomes of the ground truth table are specified
asL*and L”

Proposed Improved LA.

The Improved LA model is used in the work
is presented to optimise a weight of DCNN. Here,
the current LA method is enhanced so that it is

INPUT
IMAGES
| LAYER1: CONVOLUTION

I

PRIDE GENERATION

1}
.4

| LAYER2:SUB-SAMPLING l *'[ FERTIL

ITY EVALUATION ]

!

| LAYER3: CONVOLUTION |

!

I LAYER4:SUB-SAMPLING l

<UB GROWTH

MATING

NEW TERRESTRIAL

LION

INPUT LAYER’S WEIGHT AND

BIASES |41'—

1 [

ERRITORIAL TAKEOVER UPDATES
smal AN sfem

)

I

CALCU LATE TIIE ESTI\!ATED

up

SURVIVAL FIGHT

o
IS NOMAD
LION
i DEFEATED?

DATE NOMAD

COALITION

1

CALCULATE THE RMSE

l (Al(llAll‘ llll‘ ouTPUT

Iﬁ
|
|

IS cuB
MATURED ?

IS CUB
ELIGIBLE TO
TAKEOVER
PRIDE?

RETURN
THE
STRUCTURE

IS MAXIMUM

GENERATED

TERMINATE

Fig. 4. Adopted Improved LA Flow Diagram.

capable of handling the difficult optimization
problems. Self-improvement has generally been
shown to be promising in conventional
optimization techniques. The live nature of lion
species served as the basis for LA model. It
consists of four stages, including "mating, pride-
generating, improved territorial takeover and
territorial defence”. The proposed Improved LA
adopts the improved territorial takeover phase in
which the lions are updated based on the
maximum age of cubs. In contrast, conventional
LA do not have specific updating process. The
solution vector of Improved LA is referred as
s=[s,.s,,

Pride Generation.

The pride formulation is initiated by nomadic
lion, territorial lion, and lioness which are
indicated  as s™ s"Wands®™the  vector

components are specified ass®™' s and, s" with
len=1,2,3,...., Len; that lies within the limits of

random integers, whenri)1.The length of lion is

specified asLen and variables are denoted byn

and m .Simultaneously, when fi =1 ,the
expression forVv (S, ) is written by,
; 1
Len:{ m,m>. (37)
n; otherwise

V(Slen ) = (Slrenr:n , S|r::x) (38)

n%2=0 (39)

V(Slen ) = ZILei\ilS (40)

Ienz[%nilen)
Fertility Estimation.

Ifs® ands™ become saturated, they may have
reached a local or global optimum and so failed to
find the ideal solution. In the proposed technique

I3

S if len=d
S otherwise

len

fem+
len

(41)
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Sem = min[S(j“ax , max(S(j“ax,Vd )]
(42)

The process of mating is performed when s™™ is
considered ass™". From the expressions above
d™and len'™™ component vectors ofs*™ is
specified as S;"and s .

en

Vy =[SEm 4 (0r, ~0.08) (S —rsem)] (43)

The random constraints are specified by variables
r.,r,and d, which are produced and lie between [

[0.1]and[L Len], respectively. Also, female
update process is indicated as Vv .

Matching

Gender-based clustering occurs as a result of the
crossover and mutation processes that occur
during mating. Cubs are generated by mutation
and crossover process and are referred as, s™*
which are produced by cross over process and
s"™" by mutation process. Thus, a lioness gives
birth to four cubs when it is pregnant, and another
four cubs are created through the crossover
process. These four cubs are used to carry
out mutation procedure in order to create four
further cubs.

Lion Operators.

The territorial defensive and coalition
developments are covered in survival fight. If the
conditions in Equation (44 to 46) is satisfied is
S* " selected.

h (se'“d )<h (sma' )
(44)

h(s*)<h(s™-= ) (45)

laggardness, laggard is specified as L, ands™
,whileh(sma') beyond h’
reference. The sterility ratest,  indicatess™

fertility. While St,)St™ tolerance, the expression
becomes

specifies the fitness

h(s"™)<h(s""™) (46)

The nomadic coalition upgrade happens after the
failure of s™, while a pride update happens
after failure of s™" .

Territorial Takeover.
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The process of upgradings™ ands™ based on
maximum cub age A, takes place in this phase.
In the proposed work, the territorial takeover uses
the algorithm to upgrade s™ and s " as mentioned
in (47) and (48) which is absent in conventional
LA. In other words, the territorial updating is
based on size of male and female cubs and a
random variable called rann.

sm™ :[Sma'wb +(Sfe”"~‘“b xran n(size(Sfe”‘“b )))J (47)

g _ [Sfemm +(sma'm xran n(size(Sma'“b )))J (48)

Termination.

The design gets terminated only when
Equations (49) and (50) are satisfied.

(49)

it> it

h(5™)-h(s) <er, (50)

Figure 4 shows the flow chart for the suggested
Improved LA model. From the expression above
count of generation is indicated by it, which is set
to zero at initial and further increased to 1, during
the territorial takeover.it,, and er, stands for

maximum generation and error threshold,
respectively. The list of hyperparameters for the
evaluation selected with the help of improved LA
is mentioned in Table 2.

Table 2
List of hyperparameters.
Hyperparameters Range Optimal
Value
No. of epoch [1-200] 100
No. of filters [1-400] 16
Batch size [10-100] 32
Pooling size [1x1- 2%2
7X7]
Filter size [1x1- 3%x3
11x11]

RESULTS AND DISCUSSION

In this study, an Improved LA optimized DCNN
is used for resolving congestion issue in
unregulated environment. The optimized Deep
CNN facilitates the active power rescheduling of
generators with reduced congestion cost. Around
500 loading scenarios are being generated among
which 78% of patters are adopted for training and
22% of patterns are adopted for testing. Out of the
390 loading scenarios of training set, the number
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of congested scenarios identified is 378 while the
non-congested cases is 12. Among 110 loading
scenarios of testing set, the number of congested
loading scenarios is identified as 100 whereas the
number of non-congested loading scenarios is
identified as 10. An apparent power load, active
power load and reactive power load are applied as
inputs to DCNN in which the dimension of the
input layer is given by 3x21x1.

In order to apply power load, active power load
and reactive power load as inputs, data requires
pre-processing. Initially, the data has to be
collected at regular intervals and further pre-
processed which involves removal of outliers and

conversion of data into time-series format. The
data could then be formatted into a tensor or array,
where each row represents a time step and each
column represents a feature, such as active power
load. Finally, the formatted data can be fed as
input to the DCNN.The proposed work is verified
by implementing in MATLAB and is tested under
variety of networks including IEEE 30-bus, IEEE
57-bus and IEEE 118-bus. An upper voltage of
the load bus is 1.1 p.u, while the lower voltage of
the load bus is 0.9 p.u. Table 3 lists the test
systems  considered for evaluating the
performance of Improved LA optimized DCNN
for CM, while the congestion line details are
presented in Table 4.

Table 3
Test System details
Test system | Modified IEEE 30-bus Modified IEEE 57-Bus IEEE 118-bus
Test case 1A 1B 2A 2B 3
Considered | Line outage | Line outage Reduction of line Reduction of Line outage
Contingency | between 1 between 1 and | capacity from 50-35 | line capacity between 5 and
and 2. 7. MW and 200 to between lines | 8.
175MW between 6- | 2 and 3 from
12 and 5-6. 85 to 20 MW.
Table 4
Congestion line flow details of test system

7% 1A 1B 2A 2B 3

o ©

= O

5

2 3

S = £ 1-7 | 7-8 1-2 |28 |29 5-6 6-12 | 2-3 16-17 | 30-17 | 8-30
O aod

o
S s 147 | 140.2| 314 | 978 | 103.6| 188.7| 495| 36.6| 209.2| 580.2

% m O 5

Ty

2i8s

-3 <0 130 | 1235| 130| 61.4| 6439| 1684 | 16.8| 16.7 97.6 | 496.8

§ E . 130 | 130 130 | 65 65 175 35 20 175 500 175
g3

GE2

130




PROBLEMELE ENERGETICII REGIONALE 3(59) 2023

IEEE 30-Bus Test System

For comprehending the potential of proposed DCNN
based CM approach, a revised version of IEEE 30-
bus system that comprises of 24 load buses, 6
generator buses and 41 transmission lines is
considered. The two different cases considered here
are: Case 1A — power outage causes congestion

between lines 1-7 and 7-8; Case 1B — load rises to
50% at every bus and the lines 1-2, 2-8 and 2-9 are
congested. Table 3 gives the details about the
obtained results from which it is noted that the
proposed work generates improved outputs of
18.707 for caselA and 161.14 for case 1B.

Table 5
Test system results
Techniques TC,$/h | ARy, AR, APy, AR, APy APy TRRG
SA [24] 719.86 | -9.076 3.133 |3.234 | 2968 |2.954 | 2.443 23.809
< RSM [24] 716.25 | -8.808 2.647 | 2953 |3.063 | 2913 | 2952 23.33
— PSO [24] 538.95 | -8.61 10.4 3.03 0.02 0.85 -0.01 22.93
% FA [25] 511.87 | -8.778 15 0.106 | 0.065 |0.1734 | -0.618 | 24.74
O Proposed 421.58 | -8.596 7.57 0.352 | 1.096 | 0.568 | 0.5228 | 18.707
SA [24] 6068.7 | - - - - - - 164.53
RSM [24] 5988 - - - - - - 164.5
0 PSO [24] 53355 |- - - - - - 168
- FA [25] 5304.4 | -8.579 75.99 |0.057 |42.99 |23.83 |16.51 167.9
§ Proposed 5238.9 |-9.001 62.9 34.24 | 2.059 |29.45 | 23.47 161.14
TRRG-Total Real power Rescheduling Generator, TC-Total
2500 T T T T 800 T T T T T
& 2000 - -
E 1500 %5"”
E E 400 |
E 1000 |- '%3"0 |
= w00 b E 200 |
100
UO S‘IJ 160 NFFEg 1‘;0 260 e 2 SA RSM PSSO FA DUNN
(a) (b)
20 T r T
CASE 1A SA 115 = n
15 - = [Il::(\}l L1 MAXIMUM VALUE
1 I='_ 1!;2'\'\ Los ]

a

. Real power rescheduled (MW)
n

=

Voltage magnitude (p.u)
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.85

1
2 3 4
Generator number

(©

Fig. 5. Case 1A simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-

power and (d) Voltage magnitude.

The simulation results for case 1A are provided in
Figure 5. On analyzing the figure, it is detected that a

congestion cost is minimum for the proposed CM
approach using Improved LA optimized DCNN.
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Further, real-power losses are significantly reduced to
1265 MW from 16.13 MW, indicating the

effectiveness of the proposed methodology. The

5500 =
CASE 1B

S450
5400

5350 H

Fitness function($/h)

S300

5150 |-

Sz0m - - -
o 100 150 et

NFFE,
(a)
0 T T r T T T
CASE 1B
= 60
s
H
ERTES
£
£
TS
z
I
m . L

3
Generator number

(c)

250

voltage magnitude (p.u)

voltage magnitude is also maintained within a
reasonable range (0.9 to 1.1) after CM

T
CASE 118

Compesiion cosi{Sh)

sA RSN P50

(b)

FA DN

.
(e o]

MAXIMUM VALUE

AMINIMUNM VALUE

L M "
15 20 25
Bus number

(d)

M
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Fig. 6. Case 1B simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-
power and (d) Voltage magnitude.

From Figure 6, which gives the simulation outcomes
for case-1B, deduces that the congestion cost is
comparatively lower for the proposed DCNN based
CM approach. In this case, increase in load along
with the outage of line between 1 and 7 results in
overloading Moreover, the system losses are also
reduced to 14.59 MW from 37.24 MW after CM
using Improved LA optimized DCNN.

IEEE 57-Bus Test System

Next, a revised topology of IEEE 57-bus test system
considered for CM is made up of80 transmission
lines, 50 load buses and7 generator buses. Its reactive
and real power values, 336 MVAR and 1250.8 MW
respectively. Moreover, the details and results of the
two cases coming under this test system is provided
in Table 6.

Table 6
Test system results.
. TC,$/h

Techmques AP, AP, APR;, APR;, AP, AP, AP, TRRG

SA [24] 7116.8 | 764 |0 -2.64 1998 |-87.3 |0 0 172.9
< RSM [24] 7876.4 | 59.3 0 38.7 | -48.6 | -63.7 | 0 0 197.3
o | PSO [24] 6735.2 | 24.7 135 |854 |-649 |-823 |0 39.7 164.4
§ FA [25] 6214.4 | 5.72 275 | 063 | 021 |-39.2 |-35.1 | 62.2 146.82
O | Proposed 5324.6 |-0.05 |-11.7 |-5.81 | -45.2 | -51.3 | -34.8 | -0.53 | 144.57

SA [24] 42743 | - - - - - - - 98.74

RSM [24] 41236 | - - - - - - - 89.67
0 PSO [24] 3856.1 | - - - - - - - 76.43
N FA [25] 2987.9 | 0.37 -275 [ 314 | 044 |-232 |-187 |-0.63 | 65.87
§ Proposed 2012.3 | 0.76 0.08 | 220 |0.17 |-10.5|-0.00 | 16.07 | 49.583

44
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The simulation outcomes for case 2A are
illustrated in Figure 7, In case 2A, for lines 6-12
and 5-6, line limits are lessened from 50 MW to
35 MW and 200 MW to 175 MW respectively.
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With the occurrence of congestion, there is an
overloading between lines 6-12 and 5-6. After
CM using the proposed methodology in case 2A,

the system loss is signifi
MW from 69.64 MW.

cantly reduced to 24.558
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Fig. 8. Case 2B simulation outcomes (a) Convergence profile (b) Congestion cost (c) change in real-
power and (d) Voltage magnitude.

whereas simulation outcomes for case 2B are
illustrated in Figure 8. In case 2B, line overloading is
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created by reducing line limit to 20 MW from 85 MW
between lines 2-3. From analyzing Table 4, it is
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observed that the proposed approach delivers
comparatively better performance in Case 2A also.
In this case the system losses are greatly reduced to
28.22 MW from a primary value of 78.23 MW before
CM. On the whole, the violation of overloading
lines is alleviated by the optimized real-power
rescheduling.

IEEE 118-Bus Test System

= 10*

12

T
Case 3

Fituess function ($/h)

N M " L
1] S50 100 150 200 250
Number of iteration

(a)

The proposed DCNN based CM is also evaluated for
its effectiveness in a larger test system by deploying
it in a revised topology of 118-bus test system, made
up of 54 generator buses, 64 load buses and one
186transmission lines. In this case, the lines between
5 and 8 are disconnected, while the loads between
lines 20 and 11 are increased 1.57 times. Figure 8
gives the simulation resultsforCase3

Voltage magnitude (p. u.)

M " M " M
20 40 G0 80 1y
Bus number

(b)

Fig. 9. Case 3 simulation results (a) Convergence profile and (b) voltage magnitude.

In this case, the total system loss becomes
230.505 MW after CM using DCNN. The value
of system loss before CM is 277.301 MW. Thus,
it is significantly apparent that the proposed
DCNN methodology is effective at minimizing
congestion in any test system, regardless of its

4.0 T T T T T T T T T

- LA
— ILA

L 1 1 1 1
50 60 70 80 90 100
Iteration

Figure 11 represents the comparison of
performance error obtained using CNN,
DCNN and Improved LA optimized DCNN
related to mean absolute error (MAE), mean
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size. Figure 10 represents the comparison of
convergence in terms of cost and iteration.
From the curve it is clear that the Improved
LA exhibits rapid convergence rate when
compared to conventional LA.

Fig. 10. Comparison of convergence.

Comparison of performance error

b

DCNN Improved LA-DCNN
Fig. 11. Comparison of performance error.
squared error (RMSE) and root mean squared
error  (RMSE). The comparison outputs
indicate reduced error for the proposed neural
network indicating improved computational
performance.

=

Performance error
I T L B ]
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Table 7
Comparison of generator rescheduling for IEEE 30-bus system
Networks Outputs Gl G2 G3 G4 G5 G6
Cascaded Actual 40.882 |54.409 |16.485 |21.747 |16.083 |29.902
DCNNI[26] |Predicted | 40.469 | 54.222 16.299 |21.692 |16.073 |29.775
% Error | 1.008 0.344 1.128 0.253 0.064 0.307
DNNI[27] Actual 179.098 [ 45973 |[21.831 [23.637 |19.086 -
Predicted | 179.111 |46.416 |21.605 |23.640 | 18.901 -
% Error | 0.007 0.964 1.038 0.014 0.970 -
Proposed Actual 161.149 [55.946 |19.627 |22.676 |18.384 | 32.916
ILA-DCNN [predicted | 161.146 | 55.740 | 18.707 | 22.671 | 18.342 |32.775
% Error | 0.003 0.206 0.920 0.005 0.042 0.141

Table 6 represents the comparison of the
proposed  ILA-DCNN  for  generator
rescheduling with existing works. The listed
values indicate that the proposed work
outperforms other ones with enhanced
prediction outputs indicating reduced error
percentage.

CONCLUSION.

This study suggests a novel robust methodology
for CM in an unregulated open access electricity
environment. In order to satisfy several electrical
constraints, problem was developed as multiple-
objective function, with losses and congestion
costs as vital factors. Conventionally, FACTS
devices or nature-inspired algorisms were
prominently employed for CM in many works.
Meanwhile, in this work, DCNN is chosen for
congestion minimization in an unregulated
environment for solving the tasks of issues in
congestion management due to uncertainties in
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