Determining the Idle Mode of the Last Stages of Powerful Steam Turbines for Wet Steam Area

Senetskaya D.O., Senetskyi A.V.

National Research University "Moscow Power Engineering Institute" Moscow, Russian Federation

Abstract. Increasingly, low-capacity electricity generating installations using renewable energy sources are becoming widespread. They bring imbalance to the energy system. Frequency control is carried out using powerful steam turbines. To ensure reliable and efficient operation of powerful steam turbines, it is important to understand the processes occurring in the last stages of the low-pressure cylinder. At present, there is no approach to determining the idle mode (the moment of transition from the generation of mechanical power to its consumption) for large fanning stages. The purpose of the work is to develop an approach to estimating the relative volumetric steam flow rate of steam for large fanning stages, which characterizes the idle mode. This goal is achieved by developing a dependence to determine the idle mode for large fanning stages at nominal operating mode in a compressible medium using the results of an experimental study of model stages for high power turbines. The most important result is the satisfactory agreement between the values of volume flow rate obtained during the calculation, using the proposed method, with experimentally studies for the T-250/300-240 turbine last stage. The calculation error is about 3%. The significance of the results obtained is that the proposed approach allows determining the idle mode of the low-pressure cylinder stages of steam turbines quickly and accurately during operation and design, which makes it possible to increase the efficiency and reliability of power units.

Keywords: idle mode, steam turbine, fanning stage, compressible medium, relative volumetric flow rate.

DOI: https://doi.org/10.52254/1857-0070.2024.3-63.10 UDC: 621.16

Determinarea regimului de funcționare în gol al ultimelor trepte ale turbinelor puternice cu abur pentru regiunea umedă de stare a aburului

Senețcaia D.O., Senețky A.V.

Universitatea Națională de Cercetare "Institutul Energetic din Moscova" Moscova, Federația Rusă Rezumat. Din ce în ce mai mult, instalațiile de generare a energiei electrice de capacitate redusă, care utilizează surse regenerabile de energie devin larg răspândite. Ele aduc dezechilibru sistemului energetic. Controlul frecventei se realizează folosind turbine cu abur puternice. Pentru a asigura o functionare fiabilă si eficientă a turbinelor cu abur puternice, este important să înțelegem procesele care au loc în ultimele etape ale cilindrului de joasă presiune. În prezent, nu există nicio abordare pentru determinarea modului inactiv (momentul de tranziție de la generarea puterii mecanice la consumul acesteia) pentru etapele mari de ventilare. Scopul lucrării este de a dezvolta o abordare a estimării debitului de abur volumetric relativ al aburului pentru etapele mari de ventilare, care caracterizează modul inactiv. Acest obiectiv este atins prin dezvoltarea unei dependențe pentru determinarea regimului de repaus pentru treptele mari de ventilare la regimul nominal de funcționare într-un mediu compresibil folosind rezultatele unui studiu experimental al treptelor model pentru turbine de mare putere. Rezultatul cel mai important este aprobarea acordului satisfăcător între valorile debitului volumic obținute în timpul calculului, folosind metoda propusă, cu studii experimentale pentru ultima treaptă a turbinei T-250/300-240. Eroarea de calcul este $\approx 3\%$, ceea ce este destul de precis. Semnificația rezultatelor obținute este că abordarea propusă permite determinarea modului de mers în gol al treptelor cilindrului de joasă presiune ale turbinelor cu abur rapid si precis în timpul funcționării și proiectării, ceea ce face posibilă creșterea eficienței și fiabilității unităților de putere. *Cuvinte-cheie*: regim de mers în gol, turbină cu abur, treaptă de ventilare, mediu compresibil, debit volumetric relativ.

© Сенецкая Д.О., Сенецкий А.В.

Определение режима холостого хода последних ступеней мощных паровых турбин для области влажного пара

Сенецкая Д.О., Сенецкий А.В.

Национальный исследовательский университет «Московский энергетический институт»

Москва, Российская Федерация

Аннотация. Все большее распространение получают электрогенерирующие установки малой мощности на возобновляемых источниках энергии. Они вносят дисбаланс в энергетическую систему. Регулирование частоты осуществляется с использованием мощных паровых турбин. Для обеспечения надежной и эффективной работы мощных паровых турбин важно представлять процессы, протекающие в последних ступенях цилиндра низкого давления. В определенный момент (наступление режима холостого хода) последние ступени цилиндра низкого давления переходят от выработки механической мощности (турбинный режим) к ее потреблению (малорасходный режим). Малорасходный режим может сопровождаться значительным повышением температуры лопаточного аппарата для теплофикационных турбин и повышенным износом для турбин конденсационного типа. В настоящее время подход к определению режима холостого хода (момент перехода от выработки механической мощности к ее потреблению) для ступеней большой веерности цилиндра низкого давления отсутствует. Целью работы является разработка и предложение подхода для оценки относительного объемного расхода пара применительно к ступеням большой всерности, который дает возможность определять наступление режима холостого хода. Поставленная цель достигается путем разработки зависимости для определения характеристики холостого хода для ступеней большой веерности при номинальном режиме работы в сжимаемой среде при использовании результатов экспериментального исследования модельных ступеней для турбин большой мощности. Наиболее существенным результатом является разработанный и предложенный метод определения режима холостого хода для ступеней большой веерности, верифицированный с имеющимися результатами натурных испытаний последней ступени турбины Т-250/300-240. Значимость полученных результатов состоит в том, что предлагаемый подход позволяет быстро и достаточно точно определять режим холостого хода ступеней цилиндра низкого давления паровых турбин при эксплуатации и проектировании, что дает возможность повысить экономичность и надежность работы энергоблоков в целом.

Ключевые слова: режим холостого хода, паровая турбина, веерность ступени, сжимаемая среда, относительный объемный расход.

Условные обозначения

Θ	веерность ступени	$l_{\rm pn}$	длина рабочей лопатки, м
$\overline{Gv_2}_{xx}$	относительный объемный расход пара, соответствующий режиму	$\left(\overline{Gv_2}_{id}\right)^{Heck}$	относительный объемный расход пара, соответствующий режиму холостого
	холостого хода		хода для несжимаемой рабочей среды
$\alpha_{_1}$	угол выхода потока из направляющего аппарата °	$\gamma_{_{\rm M}}$	угол наклона меридионального оовода в направляющем аппарате °
$lpha_{ ext{l} ext{i} ext{b}}$	эффективный угол выхода из направляющего аппарата, °	ξ _c	потери энергии в сопловом аппарате
C_2	скорость на выходе ступени, м/с	$\xi_{\rm bax}$	потери энергии с выходной скоростью
C_{2u}	составляющая окружной скорости, м/с	$\left(\frac{u}{C_0} \right)_{\text{HOM}}$	характеристическое число для номинального режима работы ступени
φ,ψ	коэффициенты скорости	M_{C_1}, M_{w_2}	число Маха
ρ	степень реактивности	G	расход пара, кг/с
$D_{ m cp}$	средний диаметр ступени, м	C_{1z}	расходная составляющая скорости, м/с
$\alpha_{_2}$	угол выхода потока из рабочего колеса, °	$\xi_{ m pk}$	потери энергии в каналах рабочего колеса
$eta_{ ext{2} ext{3} \varphi}$	эффективный угол выхода из рабочего колеса, °	V _r	удельный объем в горловом сечении канала, м ³ /кг
$\left(\frac{v_2}{v_2}\right)$	соотношение удельных объемов за рабочим колесом и перед ним на	$\eta_{\scriptscriptstyle u}$	окружной КПД на венце ступени
$\left(V_{1} \right)_{HOM}$	номинальном режиме работы ступени		
ввеле	НИЕ	такив п	ооцессе их эксплуатации [1–4]. Это

В настоящее время все большее внимание уделяется повышению эффективности турбин большой мощности как при проектировании, так и в процессе их эксплуатации [1–4]. Это прежде всего связано с тем, что они являются основными составляющими при регулировании частоты энергетической системы. Принимая участие в регулировании частоты энергетической системы, мощные энергоблоки значительную часть времени (нерасчетных) работают на частичных режимах, которые мало исследованы [5]. Есть работы. В которых решается задача оптимизации эксплуатации энергоблока с целью построения логики управления в соответствии с фактическими условиями при частичной нагрузке [6]. Рассматривается только турбинный режим, вплоть до холостого хода. При этом не затрагиваются процессы. протекающие в последних ступенях проточной части турбины, которые в первую очередь реагируют на снижение нагрузки с точки зрения экономичности и надежности.

Однако, определение режима холостого хода имеет большое значение при пусках и энергоблоков, особенно остановах для последних ступеней цилиндров низкого давления (ЦНД) мощных паровых турбин. Нахождение этого режима позволит оптимизировать графики пусков из различных тепловых состояний с минимальными затратами времени [7, 8].

Определение режима холостого хода ступеней большой веерности, используемых как последние ступени цилиндров низкого давления (ЦНД) мощных паровых турбин, большое значение выбора имеет для диапазона работы турбины при регулировании энергосистемы. Первой в режим потребления мощности вступает последняя ступень ЦНД. Она имеет в турбине самую большую веерность $\Theta = \frac{l_{pn}}{D_{cp}}$. Длина рабочих лопаток *l*_{вл} последних ступеней турбин мощностью 100 и более МВт изменяется ОТ 0.55 м до 1.2 м для быстроходных и 1.44 м для тихоходных турбин при среднем диаметре проточной ступени D_{ср} > 1.8 м [9, 10]. части Для ступеней с длинными лопатками нужно сделать поправку на веерность ступени, поскольку в режимах холостого хода пространственной происходит изменение структуры потока [11, 12].

Определению режима холостого хода ступеней паровых турбин посвящен ряд как теоретических работ [13 – 16], так и публикаций результатов экспериментальных исследований [17]. В них чаще всего рассматривается работа ступеней малой и частично средней веерности с цилиндрическими меридиональными обводами. При определении холостого хода, как правило, используется одномерный подход описания движения несжимаемой рабочей среды. Для ступеней веерностью $\Theta \le 0.2$ получено достаточно хорошее совпадение расчетных результатов с опытными [14].

Исследования, выполненные экспериментально на натурных стендах для ступеней с отношением $\frac{D_{ep}}{l_{pa}} < 5 \ (\Theta > 0.2)$ в условиях сжимаемой рабочей среды (работа насыщенным или влажным паром), показали необходимость дополнительно определить влияние пространственного течения рабочей среды [17] и условий сжимаемости для ступеней, работающих в сверхзвуковой области на номинальном режиме.

В связи с вышеизложенным возникает задача определения режима холостого хода осевых ступеней турбины большой веерности. Необходимо создать подход, который позволит при минимальных временных и технических возможностях определять наступление режима холостого хода последних ступеней мощных паротурбинных установок. Это связано с тем, что последние ступени первыми реагируют на изменение параметрических характеристик и переходят из режима производства энергии в режим энергопотребления.

ВЛИЯНИЕ СЖИМАЕМОСТИ РАБОЧЕЙ СРЕДЫ НА ОПРЕДЕЛЕНИЕ РЕЖИМА ХОЛОСТОГО ХОДА

Основной параметр, характеризующий эффективность работы турбинной ступени на номинальном и частичных режимах лопаточный относительный КПД η_u (окружной КПД на рабочем венце ступени). Изменение η_{μ} зависит от многих параметров. Детально вывод уравнения для определения эффективной работы оптимальных турбинных ступеней на режимах от номинального до холостого хода для рабочей среды представлен в [13]. Осевые ступени, в которых на номинальном режиме выбором углов α_{130} , $\beta_{\rm 29b}$, степени реактивности $\rho_{\rm cp}$ на среднем диаметре и характеристическим числом $\begin{pmatrix} u/_{C_n} \end{pmatrix}$ обеспечивается осевой выход потока,

являются оптимальными.

Опираясь на предварительно проведенные исследования в работах [13, 15] получены аналитические зависимости для определения

режима холостого хода оптимальной ступени ($\alpha_2 = 90^\circ$, $C_{2u} \approx 0$) с цилиндрическими меридиональными обводами и осевым выходом потока из рабочего колеса (РК) с учетом сжимаемости в виде:

$$\overline{Gv_{2}}_{xx} = \frac{\left(\frac{u}{C_{0}}\right)_{HOM}^{2}}{\left(\frac{u}{C_{0}}\right)_{HOM}^{2} + \frac{1}{2}\left(\frac{v_{2}}{v_{1}}\right)_{HOM} \cdot \eta_{u_{HOM}}},$$
 (1)

где $\overline{Gv_{2_{XX}}} = \frac{Gv_{2_{XX}}}{Gv_{2_{HOM}}}$ – относительный объемный расход на выходе из рабочего колеса ступени (сечение 2); $Gv_{2_{XX}} = V_2$ – объемный расход через ступень при ее холостом ходе; $Gv_{2_{HOM}} = V_{2_{HOM}}$ – объемный расход через ступень при номинальном режиме работы, который соответствует максимальному КПД $\eta_{u_{max}} = \eta_{u_{mow}}$ на венце ступени; $\left(\frac{u}{C_0}\right)_{nom}$ – характеристическое число для номинального

режима работы ступени, определяемое по окружной скорости u РК на среднем радиусе и фиктивной скорости C_0 , соответствующая изоэнтропийному теплоперепаду H_0 , который срабатывается в ступени на номинальном

режиме; $\left(\frac{v_2}{v_1}\right)_{HOM}$ – отношение удельных объемов рабочей среды (пара) за РК и перед

ним (в межвенцовом зазоре, сечение 1) при номинальном режиме работы ступени.

Влияние сжимаемости рабочей среды на холостой ход ступени в уравнении (1) величиной $\left(\frac{v_2}{v_1}\right)_{max}$, которая представлено принимается при проектировании ступени и зависит от степени реактивности и чисел Маха $M_{C_1}, M_{W_2},$ определяемым по скорости истечения рабочей среды C_1 ИЗ направляющего аппарата (НА) и w₂ из РК на среднем радиусе ступени.

Для несжимаемой рабочей среды удельные объемы перед РК v_1 и за ним v_2 на номинальном режиме равны ($v_1 = v_2$) и отношение $\binom{v_2}{v_1} = 1$

отношение $\left(\frac{v_2}{v_1}\right)_{\text{ном}} = 1.$

Это позволяет зависимость (1) для несжимаемой рабочей среды привести к виду

$$\left(\overline{Gv_{2}}_{xx}\right)^{\text{HCCK}} = \frac{\left(\frac{u}{C_{0}}\right)^{2}_{\text{HOM}}}{\left(\frac{u}{C_{0}}\right)^{2}_{\text{HOM}} + \frac{1}{2}\eta_{u_{\text{HOM}}}}.$$
 (2)

Ступени большой веерности, как правило, проектируются с высокой степенью реактивности при сверхзвуковом расширении потока пара в косом срезе межлопаточных каналов как направляющих, так и рабочих венцов с переменными числами Маха по длине лопаток и сверхзвуковом потоке на среднем диаметре. При этом расходные определяются характеристики венцов отношением функций углов $\alpha_{_{13\phi}}$, $\beta_{_{23\phi}}$ и максимальном расходе при звуковой скорости потока в горловых сечениях каналов [14]. Этот фактор необходимо учитывать при анализе работы ступени большой веерности. Основные характеристики ступени на первом этапе ее проектирования определяются с привлечением одномерного подхода. При этом менее исследованы характеристики режима холостого хода ступеней большой веерности, которые являются базовыми для определения малорасходных режимов. В настоящее время все большее внимание уделяется исследованию работы различных типов турбин в области малорасходных режимов [18-21].

СТЕПЕНИ РЕАКТИВНОСТИ ДЛЯ РАЗНЫХ ТИПОВ ТУРБИН

При проектировании ступени обычно принимаются условия её работы при оптимальном режиме, которому соответствуют минимальные потери с выходной скоростью, то есть выход потока из РК под углом $\alpha_2 = 90^\circ$ к плоскости кромок рабочих лопаток.

Расчет ступени большой веерности по среднему диаметру выполняется как первое приближение по одномерной теории течения рабочей среды. При расчете турбинной ступени следует считать заданными величины: расход пара через ступень *G*, параметры протекающего пара на входе P_0 , t_0 , направление потока при входе в ступень (угол α_0), частота вращения ротора $\omega_0 = \pi n/30$, где n – число оборотов ротора в минуту.

Степень реакции ρ и соотношение скоростей $\frac{u}{C_0}$ принимается исходя из опыта.

Выбор степени реактивности зависит от типа ступени [9].

Для последних ступеней турбин большой мощности выбор степени реактивности зависит от выбора веерности ступени Θ , которая для эксплуатируемых турбин примерно находится в диапазоне $\Theta > 0.2$. На рис. 1 приведены возможные диапазоны выбора степени реактивности для ступеней, имеющих различную веерность.

При $\Theta \le 0.1$ степень реактивности принимается в диапазоне $\rho = 0.05 \div 0.15$ и связана с выбором профиля лопаток.

Следует отметить, что с повышением степени реактивности уменьшается оптимальная величина располагаемого теплоперепада. При этом в зависимости от степени реактивности определяется оптимальное отношение скоростей $\frac{u}{C_0}$, обеспечивающее максимальный относительный лопаточный КПД ступени.

Паровые турбины: 1 – К-800-240; 2 – Т-250/300-240; 3 – К-325-23.5; 4 – К-325-23.5 э; 5 – К-300-240 э; 6 – К-300-240-2; 7 – К-200-12.8м; 8 – К-200-12.8-5м; 9 – К-200-12.8-6м; модельные ступени большой веерности: І, Ік, III, ІК, III, IV

Рис. 1. Диапазон выбора реактивности для ступеней большой веерности.¹

Следует отметить, что с повышением степени реактивности уменьшается оптимальная величина располагаемого теплоперепада. При этом в зависимости от степени реактивности определяется оптимальное отношение скоростей u_{C_0} , обеспечивающее максимальный относительный лопаточный КПД ступени.

Следует учитывать, что при уменьшении $\frac{u}{C_0} < \left(\frac{u}{C_0}\right)_{orr}$ в ступени срабатывается больший теплоперепад. Это с одной стороны приводит к снижению КПД, а с другой – к уменьшению числа ступеней или диаметра ступени и, тем самым, к удешевлению изготовления турбины [15].

В нашем случае рассматривается изготовленная ступень и решается прямая задача влияния $\left(\frac{u}{C_{o}} \right)$, $\eta_{u_{max}}$ и отношения удельных объемов рабочей среды на $\left(\frac{v_2}{v_1}\right)$ номинальном режиме на ее режим холостого хода.

определения Для холостого хода рассматриваются оптимальные ступени, в которых при заданных уровнях коэффициентов скорости *ф* для НА и *ψ* – для PK. потери с выходной скоростью минимальны. Коэффициент скорости для направляющих φ и рабочих лопаток ψ принимается согласно [9].

С учетом изменения влажности пара для работы ступеней большой веерности в диапазоне $y_2 = 0 \div 0.12$, коэффициенты скорости составляют $\varphi = 0.97$ и $\psi = 0.94$.

Учитывая диапазон изменения степени реактивности согласно рис. 1 для рассматриваемой ступени веерности Θ , необходимо определить величины: $\begin{pmatrix} u \\ C_0 \end{pmatrix}_{arr}$,

 $\eta_{u_{orr}}$ и $\left(\frac{v_2}{v_1}\right)_{orr}$ (для упрощения изложения, далее

индекс «опт» будет опущен).

КПД η_u на венце ступени определяется потерями энергии в соплах $\xi_c = 1 - \varphi^2$, каналах РК $\xi_p = 1 - \psi^2$ и выходной скоростью $\xi_{\text{вых}} = \left(\frac{C_2}{C_0}\right)^2$ и

записывается как

$$\eta_{\mu} = 1 - \xi_{\rm c} - \xi_{\rm p} - \xi_{\rm BMX} \,. \tag{3}$$

Уравнение (3) после подстановки ξ_c , ξ_p и $\xi_{\text{вых}}$ примет вид

$$\eta_u = \varphi^2 + \psi^2 - 1 - \left(\frac{C_2}{C_0}\right)^2.$$
 (4)

Для определения выходной скорости *C*₂ при работе ступени в сжимаемой среде используется уравнение сохранения расхода для венцов ступени

$$G = \frac{\mu_1 \cdot C_{1_z}}{v_1} = \frac{\mu_2 \cdot C_2}{v_2},$$
 (5)

¹ Appendix 1

где $\mu_1 = \mu_2 \approx 1,02 - коэффициенты расхода$ в НА и РК для влажного пара.

Тогда из уравнения (5) величина C₂ определится как

$$C_2 = C_{1z} \left(\frac{v_2}{v_1} \right)_{\text{HOM}},$$
 (6)

а расходная составляющая скорости C_{1z} из треугольника скоростей (рис. 2) составит

$$C_{1z} = C_1 \cdot \sin\alpha_1 = \varphi C_0 \sin\alpha_1 \sqrt{1 - \rho} . \qquad (7)$$

Рис. 2. Треугольники скоростей на среднем диаметре ступени для номинального режима работы.²

Принимая во внимание уравнение (7), величина $\left(\frac{C_2}{C_0}\right)^2$ определится как

$$\left(\frac{C_2}{C_0}\right)^2 = \varphi^2 \sin^2 \alpha_1 \left(1 - \rho\right) \left(\frac{v_2}{v_1}\right)_{\text{HOM}}^2$$
(8)

и с другой стороны (из выходного треугольника скоростей) как

$$\left(\frac{C_2}{C_0}\right)^2 = \left(\frac{u}{C_0}\right)^2_{\text{HOM}} \cdot \text{tg}^2\beta_2.$$
(9)

Учитывая (9) КПД на венце ступени примет вид

$$\eta_u = \varphi^2 + \psi^2 - 1 - \left(\frac{u/C_0}{C_0}\right)_{\text{HOM}}^2 \cdot \text{tg}^2 \beta_2 \qquad (10)$$

и обращенная функция для определения холостого хода может быть представлена выражением

$$\frac{1}{Gv_{2_{xx}}} = 1 + \frac{1}{2} \left(\frac{v_2}{v_1} \right)_{\text{HOM}} \cdot \frac{\eta_{u_{\text{IIII}}}}{\left(\frac{u}{C_0} \right)_{\text{HOM}}^2} = 1 + \frac{1}{2} \left(\frac{v_2}{v_1} \right)_{\text{HOM}} \cdot \left[\frac{\varphi^2 + \psi^2 - 1}{\left(\frac{u}{C_0} \right)_{\text{HOM}}^2} - \text{tg}^2 \beta_2 \right], \quad (11)$$

в котором необходимо определить характеристическое число $\begin{pmatrix} u/_{C} \end{pmatrix}$.

Сопоставляя уравнения (8) и (9), величину степени реактивности, можно представить как

$$1 - \rho = \left(\frac{u}{C_0}\right)_{\text{HOM}}^2 \cdot \frac{\operatorname{tg}^2 \beta_2}{\varphi^2 \sin^2 \alpha_1 \cdot \left(\frac{v_2}{v_1}\right)_{\text{HOM}}^2}.$$
 (12)

Для оптимальной ступени в [9] приведено уравнение, которое с погрешностью, не превышающей 1.5% может быть представлено в виде

$$2\varphi \cdot \psi^2 \cdot \cos \alpha_1 \sqrt{1 - \rho} \cdot \left(\frac{u}{C_0} \right)_{\text{HOM}} - \varphi^2 \cdot \psi^2 = 0, \quad (13)$$

из которого следует $\left(\frac{u}{C_0}\right)_{\text{ном}} = \frac{\varphi}{2\cos\alpha_1\sqrt{1-\rho}}$.

Тогда после преобразования степень реактивности определится как

$$1 - \rho = \frac{\varphi^2}{4 \cdot \cos^2 \cdot \alpha_1 n \left(\frac{u}{C_0}\right)_{_{\rm HOM}}^2}.$$
 (14)

Приравняв зависимости (12) и (14), после простых преобразований, получаем

$$\left(\frac{u/C_0}{u/C_0}\right)_{HOM}^2 = \frac{\varphi^2}{2} \cdot \frac{\mathrm{tg}\alpha_1}{\mathrm{tg}\beta_2} \cdot \left(\frac{v_2}{v_1}\right)_{HOM}$$
(15)

и после подстановки в (11) имеем

$$\overline{Gv_{2}}_{xx} = \frac{1}{1 + \frac{1}{\varphi^{2}} (\varphi^{2} + \psi^{2} - 1) \cdot \frac{\text{tg}\beta_{2}}{\text{tg}\alpha_{1}} - \frac{1}{2} \text{tg}^{2}\beta_{2} \cdot \left(\frac{v_{2}}{v_{1}}\right)_{\text{BOM}}}, (16)$$

где все величины соответствуют номинальному режиму работы ступени при расчетных значениях чисел Maxa.

ПОСТРОЕНИЕ РАСЧЕТНОЙ МОДЕЛИ

Работоспособность зависимости (16) может быть проверена сопоставлением значений величины $\overline{Gv_{2xx}}$, получаемых расчетом $(\overline{Gv_{2xx}}^{\text{расч}})$ с результатами экспериментального исследования [17] $(\overline{Gv_{2xx}}^{\text{эксп}})$ моделей ступеней большой веерности в условиях работы несжимаемой средой (воздух при $M_{w_{v}} < 0.45$).

Результаты этого исследования приведены в таблице 1. С учетом несжимаемости рабочей среды уравнение (16) примет вид

$$\overline{Gv_{2}}_{xx} = \frac{1}{1 + \frac{1}{\varphi^{2}} (\varphi^{2} + \psi^{2} - 1) \cdot \frac{\mathrm{tg}\beta_{2}}{\mathrm{tg}\alpha_{1}} - \frac{1}{2} \mathrm{tg}^{2} \cdot \beta_{2}} .$$
 (17)

На рис. 3, а представлено сопоставление расчетных и экспериментально полученных значений $(\overline{Gv_{2xx}})^{\text{несж}}$. Экспериментальные значения $\overline{Gv_{2xx}}^{\text{эксн}}$ линейно уменьшаются для ступеней большой веерности, начиная от величины $(\overline{Gv_{2xx}})^{\text{несж}} = 0.54$ в диапазоне

изменения функции $\frac{\text{tg}\beta_2}{\text{tg}\alpha_1} = 1.0435 \div 1.344$ (ступень I-IV). При этом расчетная величина $\overline{Gv_2}_{_{XX}}^{_{\text{расч}}}$ определяется зависимостью (17).

Сопоставление значений, полученных расчётом по уравнению (17) с экспериментально полученными, показало, что влияние функции углов $\frac{\text{tg}\beta_2}{\text{tg}\alpha_1}$ и угла наклона $\gamma_{\text{м}}$ можно учесть в виде поправки к данному уравнению

$$\left(\overline{Gv_{2_{xx}}}\right)^{\text{HCR}} = \frac{1}{1 + \frac{1}{\varphi^2} \left(\varphi^2 + \psi^2 - 1\right) \cdot \frac{\text{tg}\beta_2}{\text{tg}\alpha_1} - \frac{1}{2}\text{tg}^2 \cdot \beta_2} + \Delta \overline{Gv_{2_{xx}}}^{\gamma=0} + \Delta \overline{Gv_{2_{xx}}}^{\gamma}.$$
(18)

Таблица 1.3

Ступень (Stage)	Ι	Ік	II	ΙΙκ	III	IV
$D_{\rm cp}/l_{\rm p\pi} \left(D_{\rm mid}/l_{\rm rb} ight)$	2.58	2.58	2.87	2.87	3.24	4.57
$\overline{r}_{_{\mathrm{BT}}}\left(\overline{r}_{_{\mathrm{bush}}}\right)$	0.4421	0.4421	0.4818	0.4818	0.5283	0.641
t/b	0.7136	0.7136	0.7136	0.7136	0.7136	0.7136
$lpha_{\scriptscriptstyle m l o \phi}^{ m cp}\left(lpha_{\scriptscriptstyle m leff}^{ m mid} ight)$, °	22	22	22	22	22	22
$eta_{2:4\phi}^{ ext{cp}}\left(eta_{2: ext{eff}}^{ ext{mid}} ight),~^{\circ}$	22.9	22.9	24	24	25.3	27.8
$\gamma_{_{\mathrm{M}}}(\gamma_{\mathrm{m}}),$ °	0	30	0	50	0	0
$\left(\frac{u_{C_0}}{C_0} \right)_{\text{HOM}} \left(\left(\frac{u_{C_0}}{C_0} \right)_{\text{nom}} \right)$	0.67	0.530	0.675	0.505	0.61	0.54
$\eta_{u\mathrm{max}}$	0.716	0.678	0.740	0.652	0.757	0.748
$arphi^{_{ m >KCH}}\left(arphi^{_{ m exp}} ight)$	0.974	0.97	0.961	0.955	0.985	0.98
$\psi^{_{^{ m > KCH}}}\left(\psi^{_{ m exp}} ight)$	0.936	0.93	0.944	0.94	0.945	0.952
α_2 , °	107	83	90	75	92	97
$\overline{\overline{Gv_2}_{xx}}^{\text{эксп}}\left(\overline{Gv_2}_{id}^{\text{exp}}\right)$	0.54	0.480	0.525	0.450	0.495	0.460
$\overline{Gv_2}_{xx}^{pac4} \left(\overline{Gv_2}_{id}^{calc}\right)$	0.5568	_	0.5399	_	0.5157	0.4900

Характеристики исследованных моделей турбинных ступеней большой веерности.4

Зависимость $\overline{Gv_{2_{xx}}}^{\text{расч}} - \overline{Gv_{2_{xx}}}^{\text{расч}}$ при цилиндрических обводах показала линейное изменение этой функции от функции углов $\frac{\text{tg}\beta_2}{\text{tg}\alpha_1}$ (рис. 3, б), что позволяет ввести поправку $\Delta \overline{Gv_{2_{xx}}}^{r=0}$ к расчетной зависимости (17) при $\left(\frac{v_2}{v_1}\right) = 1$ в виде

$$\Delta \overline{Gv_{2}}_{xx}^{y=0} = -0,07 \left(\frac{\mathrm{tg}\beta_{2}}{\mathrm{tg}\alpha_{1}} - 1 \right).$$
 (19)

Анализ изменения величины $\Delta \overline{Gv_{2_{xx}}}^{\gamma=0}$ при $\gamma_{\rm M} = 0^{\circ}$ показал относительно слабое влияние пространственной структуры потока в венцах ступени при принятых законах закрутки лопаточных аппаратов.

Рис. 3. Сопоставление характеристик холостого хода группы ступеней, полученных экспериментально и расчетом по зависимости (16).⁵

Более существенно на структуру потока влияет конусность периферийного меридионального обвода НА (рис. 3, в), что привело к уменьшению величины $\overline{Gv_{2xx}}$ [22]. Это позволяет получить поправку на влияние угла наклона $\gamma_{\rm M}$ к зависимости при $0^{\circ} \leq \gamma_{\rm M} \leq 50^{\circ}$ следующего вида

$$\Delta \overline{Gv_2}_{xx}^{\gamma} = -0,069\sqrt{\operatorname{tg}\gamma_{M}}.$$
 (20)

С учетом поправок (19) и (20) зависимость для опрелеления холостого хода ступени болы ⁵ Appendix 1 имет вид

$$\left(\overline{Gv_{2_{xx}}}\right)^{\text{nexx}} = \frac{1}{1 + \frac{1}{\phi^{2}}(\phi^{2} + \psi^{2} - 1) \cdot \frac{\lg\beta_{2}}{\lg\alpha_{1}} - \frac{1}{2} \lg^{2} \cdot \beta_{2}} - -0.07 \left(\frac{\lg\beta_{2}}{\lg\alpha_{1}} - 1\right) - 0.069 \sqrt{\lg\gamma_{x}}.$$
 (21)

Представление уравнения (21) в виде трех составляющих: теоретически основных полученное уравнение (16) для ступеней с цилиндрическими обводами $(\gamma_{\rm M} = 0^{\rm o}),$ работающей на номинальном режиме в области сжимаемой среды и двух поправок (19) и (20), полученных сопоставлением с результатами экспериментального исследования в условиях несжимаемой среды потребовало рассмотреть влияние величины на уровень поправок. В этом случае v_1

зависимости (19) и (20) примут вид

$$\begin{split} \Delta \overline{Gv_{2_{XX}}}^{\gamma=0} &= -0,07 \bigg(\frac{\mathrm{tg}\beta_2}{\mathrm{tg}\alpha_1} - 1 \bigg) \cdot \sqrt{\bigg(\frac{v_2}{v_1} \bigg)_{_{\mathrm{HOM}}}} \\ \Delta \overline{Gv_{2_{XX}}}^{\gamma} &= -0,069 \sqrt{\mathrm{tg}\gamma_{_{\mathrm{M}}}} \cdot \sqrt{\bigg(\frac{v_2}{v_1} \bigg)_{_{\mathrm{HOM}}}} \cdot \end{split}$$

;

Тогда зависимость (21) приобретает следующий вид

$$\overline{Gv_{2xx}} = \frac{1}{1 + \frac{1}{\phi^2} (\phi^2 + \psi^2 - 1) \cdot \frac{\operatorname{tg}\beta_2}{\operatorname{tg}\alpha_1} - \frac{1}{2} \operatorname{tg}^2 \beta_2 \cdot \left(\frac{\nu_2}{\nu_1}\right)_{max}} - \left(0.07 \left(\frac{\operatorname{tg}\beta_2}{\operatorname{tg}\alpha_1} - 1\right) + 0.069 \sqrt{\operatorname{tg}\gamma_w}\right) \sqrt{\left(\frac{\nu_2}{\nu_1}\right)_{max}} \cdot (22)$$

Рассмотрим далее определение величины $\left(\frac{v_2}{v_1}\right)_{HOM}$ для оценки влияния сжимаемости пара

на номинальном режиме на холостой ход ступени при использовании уравнения (22).

Ступени ЦНД большой веерности при номинальном режиме работают в своем большинстве влажным паром при значительной величине отношения И сверхкритическом режиме течения пара в косом срезе из каналов РК ($M_{w} > 1.0$). В горловых сечениях каналов РК (а в некоторых случаях и каналов НА) устанавливается критический режим течения пара ($M_{c_1} = 1.0$, $M_{_{w_2}} = 1.0$). При $M_{_{C_1}} \le 1.0$ и $M_{_{w_2}} \le 1.0$ углы выхода потока равны эффективным $\alpha_1 = \alpha_{1,ab}$, $\beta_2 = \beta_{230}$.

Расчетный диапазон течения пара в каналах РК можно разделить на три участка: *несжимаемая среда* при числах Маха *M_w* < 0.45; *слабо сжимаемая среда* в

диапазоне изменения $0.45 \le M_{w_2} \le 1.0$ и *сжимаемая среда* при числах Маха $M_{w_2} > 1.0$, когда большая доля расширения пара приходится на косой срез.

При M_{c_1} , $M_{w_2} < 0.45$ работают ступени цилиндра высокого давления (ЦВД) и первые ступени цилиндра среднего давления (ЦСД), при $0.45 \le M_{w_2} \le 1.0$ работают ступени ЦСД и первые ступени ЦНД, при $M_{w_2} > 1.0$ работают последние ступени и на некоторых турбинах предпоследние ступени ЦНД.

Изменение отношения удельных объемов $\left(\frac{v_2}{v_1}\right)_{HOM}$ можно разделить на две части: в канале

до горлового сечения и в косом срезе. При этом с учетом адиабатного течения пара в ступени принимается, что $\left(\frac{v_2}{v_1}\right)_* = \frac{1}{\mathcal{E}_*^{V_\kappa}}$, где

 $\varepsilon_* = \frac{P_r}{P_1} - \kappa$ ритическое отношение давлений в горловом сечении P_r межлопаточного канала и перед рабочим колесом $P_1 > P_r$, к – показатель адиабаты рабочей среды. Величина ε_* может быть представлена в зависимости от состояния пара $\varepsilon_* = \left(\frac{2}{\kappa+1}\right)^{\frac{\kappa}{\kappa-1}}$ [9]. В этом случае показатель

адиабаты κ для влажного пара может быть выражен через степень сухости x, а именно $\kappa = 1.035 + 0.1x$.

При $M_{w_2} < 0.45$ рабочую среду можно рассматривать как несжимаемую, т.е. отношение $\left(\frac{v_2}{v_1}\right) = 1$, при $0.45 \le M_{w_2} \le 1.0$ величина $\left(\frac{v_2}{v_1}\right)$ изменяется в диапазоне $1.0 \div 1.6235$ и может быть описана уравнением

$$\left(\frac{v_2}{v_1}\right) = 0.5 + 1.123 M_{w_2},$$
 (23)

где $v_2 = v_r - y$ дельный объем в горловом сечении канала при $M_{w_2} \le 1.0$. Степень сухости *x* в этой части канала принята равной x = 0.96 как средняя величина, рассмотренная для ряда ступеней большой веерности, работающих в ЦНД паровых турбин.

В диапазоне изменения режимов $M_{\nu_2} > 1.0$ отношение $(\nu_r) = 1.6235$ остается ⁶ Appendix 1 постоянным, а рост величины $\begin{pmatrix} v_2 \\ v_1 \end{pmatrix}$ происходит при расширении пара в косом срезе каналов.

Результаты изменения $\left(\frac{v_2}{v_1}\right)$ в зависимости от режима работы межлопаточных каналов РК приведены на рисунке 4, а.

Рис. 4. Влияние сжимаемости рабочей среды (однофазной среды) на режим холостого хода ступени большой веерности.⁶

Это изменение может быть представлено зависимостью (рис. 4, б) как

$$\left(\frac{v_2}{v_1}\right) - \left(\frac{v_r}{v_1}\right)_{\rm kp} = 6.265 \left(M_{w_2} - 1.0\right)^2 .$$
 (24)

Обобщая уравнения (23), (24), отношение удельных объемов за и перед РК можно представить в виде:

– для диапазона $0.45 \le M_{_{W_2}} \le 1.0$

$$\left(\frac{v_2}{v_1}\right) = 0.5 + 1.123 M_{w_2};$$
 (25)

-для диапазона $M_{_{w_{7}}} > 1.0$

$$\left(\frac{v_2}{v_1}\right) = 1.6235 + 6.265 \left(M_{w_2} - 1.0\right)^2$$
. (26)

Определение соотношения удельных объемов с учетом реальных условий работы последних ступеней позволяет использовать приведенные выше уравнения для расчета режима холостого хода ступени.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Использование предложенного подхода для определения величины $\overline{Gv_{2xx}}$ ступени большой веерности, работающей на номинальном режиме в области влажного пара при сверхзвуковом истечении парового потока из межлопаточных каналов РК целесообразно рассмотреть на примере работы последней ступени турбины T-250/300-240, режим холостого хода для которой определен В. А. Хаимовым [17] на эксплуатируемой турбине в условиях электростанции и равен $\overline{Gv_{2xx}} \approx 0.31$.

Последняя ступень этой турбины имеет следующие характеристики: веерность $\Theta = 0.3725$; эффективный угол $\alpha_{13\phi} = 17.45^{\circ}$; угол выхода потока $\beta_2 = 27.84^{\circ}$; угол конусности НА $\gamma_{M} = 47^{\circ}$; число Маха на среднем диаметре при номинальном режиме работы ступени равно $M_{c_1} = 1.0$, $M_{w_2} = 1.22$; коэффициенты скорости $\varphi = 0.97$ и $\psi = 0.93$.

Отношение удельных объемов пара с учетом уравнения (26) $\left(\frac{v_2}{v_1}\right) = 1.927$. Величина характеристики холостого хода согласно (22) с учетом (26) будет равна $\overline{Gv_{2_{yx}}} = 0.30$.

Сопоставление экспериментально полученного значения на натурном объекте (турбина, эксплуатируемая на ТЭЦ) $\overline{Gv_{2_{xx}}} \approx 0.31$ и значения, рассчитанного по предложенной методике $\overline{Gv_{2_{xx}}} = 0.30$ показывает удовлетворительное совпадение.

Согласно зависимости (22) при условии $\left(\frac{v_2}{v_1}\right)_{\text{ном}} = 1$ режим холостого хода для несжимаемой

рабочей среды определится величиной $(\overline{Gv_{2xx}})^{\text{иесж}} = 0.34$. В этом случае соотношение $\overline{Gv_{2xx}} = 0.0$ ито посредство сочитбиой биличей

 $\frac{\overline{Gv_{2_{xx}}}}{(\overline{Gv_{2_{xx}}})^{\text{весж}}} = 0.9$, что позволяет с ошибкой близкой

≈10% выполнять расчеты не учитывая сжимаемость пара при номинальном режиме.

выводы

С использованием одномерной теории осевых турбинных ступеней и расчета результатов экспериментальных исследований выполнен анализ возможности определения режима холостого хода оптимальной ступени большой веерности по ее характеристикам при номинальном режиме. Для ступеней большой веерности С цилиндрическим получено обводом уравнение для определения характеристики отношению холостого хода ПО к номинальному режиму в виде относительного объемного расхода пара $\overline{Gv_{2}}_{xx}$.

Предложенный подход для определения режима холостого хода для номинального режима дал удовлетворительную сходимость при сравнении с результатами экспериментальных исследований, проведенных Хаимовым В. А. на турбине T-250/300-240, работающей на несжимаемой рабочей среде (воздух).

С использованием предложенной зависимости получено, что величина относительного объемного расхода пара $\overline{Gv_{2_{xx}}} = 0.30$, в то время как экспериментально полученное значение относительного объемного расхода пара на натурном объекте (турбина, эксплуатируемая на ТЭЦ) $\overline{Gv_{2_{xx}}} \approx 0.31$.

Также по данному подходу был проведен расчет величины режима холостого хода для несжимаемой рабочей среды, в результате чего величина $(\overline{Gv_{2xy}})^{\text{веск}} = 0.34$, в этом случае

$$\frac{\overline{Gv_{2_{xx}}}}{(\overline{Gv_{2_{xx}}})^{\text{несж}}} = 0.9.$$
 Следовательно, с

погрешностью 10% можно выполнять расчеты не учитывая сжимаемость пара при номинальном режиме.

БЛАГОДАРНОСТЬ

Работа проводилась при активном участии профессора Шубенко Александра Леонидовича и профессора Голощапова Владимира Николаевича. Благодаря их знаниям и опыту в области энергетики, пониманию термодинамических процессов, происходящих в проточной части турбомашин, был разработан представленный в работе подход к определению режима холостого хода.

АРРЕNDIX 1 (ПРИЛОЖЕНИЕ 1)

Steam turbines: 1 – *K*-800-240; 2 – *T*-250/300-240; 3 – *K*-325-23.5; 4 – *K*-325-23.5 ;; 5 – *K*-300-240 ;; 6 – К-300-240-2; 7 – К-200-12.8м; 8 – К-200-12.8-5м; 9 – К-200-12.8-6м; model stages of big turbine fanning: I, Iк, II, IIк, III, IV

¹Fig. 1. Region of reaction change for the large fanning stages.

²Fig. 2. Velocity triangles at the mid-diameter stage for the nominal operation mode.

^{3,4}Table 1. Characteristics of the investigated models of large fanning turbine stages.

⁵**Fig. 3.** Experimental and calculated (16) characteristics of the stages group idle mode.

⁶Fig. 4. Compressibility influence of the working medium (single-phase medium) on the idle mode of the large fanning stage.

Литература (References)

- Nosach V.G., Shraiber A.A. Enhancement of the efficiency of gas-turbine plants due to the joint use of thermochemical and steam recuperation. *International Journal of Energy for a Clean Environment*, 2008, No. 9 (1-3), pp. 223-227. <u>https://doi.org/10.1615/InterJEnerCleanEnv.v9.i1</u> <u>-3.160</u>.
- [2] Tang D., Liu N., Wang J., Zhao C., Luo F. Effect of load on combustion cyclic variation in CNG/diesel dual-fuel engine. *International Journal of Energy for a Clean Environment*, 2020, No. 21 (1), pp. 25-39. <u>https://doi.org/10.1615/InterJEnerCleanEnv.2020</u> 031254.
- [3] Nourin F.N., Amano R.S. Study on heat transfer enhancement of gas turbine blades. *International Journal of Energy for a Clean Environment*, 2020, No. 21 (2), pp. 91-106. <u>https://doi.org/10.1615/InterJEnerCleanEnv.2020</u> 033628.
- [4] Kim S.-J., Suh J.-W., Choi Y.-S., Park J., Park N.-H., Kim J.-H. Inter-blade vortex and vortex rope characteristics of a pump-turbine in turbine mode under low flow rate conditions. *Water*. 2019. 11. 2554. <u>https://doi.org/10.3390/w11122554</u>.
- [5] Karakurt Sinan A., Güneş Ümit. Performance analysis of a steam turbine power plant at part load conditions. *Journal of Thermal Engineering*. 2017. Vol. 3. No. 2. P. 1121-1128. https://doi.org/10.18186/thermal.298611.
- [6] Schleer M., Steil J. Increasing the performance of steam turbines at part load by optimizing the control system during operation. *Proceedings of Global Power and Propulsion Society*. GPPS Hong Kong 2023, October 17-19, 2023. GPPS-TC-2023-0238, pp. 1–11. <u>https://gpps.global/wpcontent/uploads/2023/10/GPPS-TC-</u> 2023 paper 238.pdf.
- [7] Radin Yu.A. Improving the Flexibility and Reliability of Steam Power Units at Thermal Power Plants. *Thermal Engineering*, 2021, No. 68 (6), pp. 481-489. https://doi.org/10.1134/S0040601521060070.

- [8] Ghazvini M.B., Sànchez-Marrè M., Bahilo E., Angulo C. Operational Modes Detection in Industrial Gas Turbines Using an Ensemble of Clustering Methods. *Sensors*, 2021, No. 21, 8047, pp. 1-25. <u>https://doi.org/110.3390/s21238047</u>.
- [9] Kirillov I.I. *Teoriya turbomashyn* [The theory of turbomachines]. St. Petersburg: Mechanical engineering, 1972. 536 p. (In Russian).
- [10] Kostyuk A.G., Bulkin A.E., Trukhny A.D. Parovye i gazovye turbiny dlya elektrostantsyyy [Steam turbines and gas turbine installations for power plants]. Moscow: MPEI Publishing House, 2018. 557 p. (In Russian).
- [11] Bogomolova T.V. *Peremennye rezhymy paroturbinnyh ustanovok: uchebnik* [Variable modes of steam turbine plants: textbook]. Moscow: MPEI Publishing House, 2022. 208 p. (In Russian).
- [12] Bogomolova T.V. Raschet i proektirovanie poslednih stupeneyy parovyh turbin: uchebnik
 [Calculation and design of the last stages of steam turbines: textbook]. Moscow: MPEI Publishing House, 2021. 84 p. (In Russian).
- [13] Shubenko A., Goloshchapov V., Senetska D., Senetskyi O. Determination of the Idle Mode of the Stage of Axial Turbine during Operation at Partial Loads. *Periodica Polytechnica Mechanical Engineering*, 2021, No. 65 (1), pp. 103-109. <u>https://doi.org/10.3311/PPme.17359</u>
- [14] Slabchenko O.N. O harakteristikah osevoyy turbinnoyy stupeni [On the characteristics of the axial turbine stage]. Bulletin of the National Technical University "KhPI" of Ukraine, 2018, No. 12 (1288), pp. 75-82. (In Russian).
- [15] Shubenko A.L., Goloshchapov V.N., Bystritsky L.N., Agafonov B.N., Alyokhina S.V., Kasilov V. I. Parovye turbiny: malorashodnye rezhymy stupeneyy nizkogo davleniya [Steam turbines: little consumable modes of low-pressure stages]. St. Petersburg: Energotech, 2018. 344 p. (In Russian).
- [16] Alyokhina S., Kostikov A., Satayev M., Saipov A. Numerical calculation of conjugate heat transfer in end seals of steam turbines. *Computational Thermal Sciences*, 2016, No. 8 (5), pp. 483-488.
 <u>https://doi.org/10.1615/ComputThermalScien.20</u> 16017179.
- [17] Khaimov V.A. Little consumable modes of low pressure of T-250/300-240 turbine.
 St. Petersburg: BHV-Petersburg, 2007. 235 p.
- [18] Arakelyan E.K., Bezdelgin I.O., Andryushin K.A. Temperature State of the Flow-Through Part of a T-125/150 PGU-450 Steam Turbine Operating in the Steam-Free and Motor Regimes. *Power Technology and Engineering*, 2015, No. 49, pp. 291-295. <u>https://doi.org/10.1007/s10749-015-0617-z</u>.

- [19] Arakelyan E.K., Pikina G.A., Andryushin A.V., Mezin S.V., Andryushin K.A., Pashchenko F.F. Taking into Account the Operating Modes of the Steam Turbine Stage When Modeling Hydrodynamic and Thermal Processes in Non-Steam and Motor Modes. *Procedia Computer Science*, 2020, No. 175, pp. 492-499. https://doi.org/10.1016/j.procs.2020.07.070.
- [20] Topel M. Steam Turbine Thermal Modeling for Improved Transient Operation, Licentiate Thesis, KTH Royal Institute of Technology, Industrial Engineering and Management, Department of Energy Technology. *Heat and Power Division*, SE-100 44, Stockholm, Sweden, 2014.

Сведения об авторах.

Сенецкая Дарья Олеговна, преп. каф. ВМ НИУ «МЭИ». Область научных интересов: тепловые и газодинамические процессы в последних ступенях мощных теплофикационных и конденсационных турбин. ORCID: 0000-0003-2527-4529 E-mail:

dasha.seneckaya@gmail.com

https://www.academia.edu/18449115/Steam_Tur bine_Thermal_Modeling_for_Improved_Transie nt_Operation

- [21] Samoilovich G.S., Troyanovsky V.M. *Peremennye i perehodnye rezhymy v parovyh turbinah* [Variables and transient modes in steam turbines]. Moscow: Energoizdat, 1982. 494 p. (In Russian).
- [22] Shubenko A.L., Goloshchapov V.N., Senetska D.O. The operation of the last stage of steam turbine at the low-flow rate modes. *Energetika*, 2020, No. 66 (1), pp. 1-10. <u>https://doi.org/10.6001/energetika.v66i1.4299</u>.

Сенецкий Александр Владимирович, проф. каф. ТОТ НИУ «МЭИ», доктор технических наук. Область научных интересов: турбинные циклы с использованием водяного пара и низкокипящих рабочих тел, энергосбережение. ORCID: 0000-0001-8146-2562

E-mail: <u>SenetskyAV@mpei.ru</u>