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Abstract. The accurate prediction of remaining useful life (RUL) of electric vehicle (EV) batteries is a 

critical aspect of intelligent battery management systems. Effective RUL prediction not only ensures 

vehicle safety and reliability but also plays a pivotal role in optimizing charging cycles, reducing 

maintenance costs, and extending the overall battery lifespan. This work presents a comprehensive Deep 

Learning (DL) framework for predicting RUL of EV batteries, using a novel Hyperscale-Cascaded 

Transformer Net architecture designed to capture long-term dependencies and degradation patterns in 

battery behavior. The proposed system initiates with data acquisition, wherein parameters such as cycle 

index, voltage, current, and time-based features are collected. Raw data undergoes preprocessing, which 

includes data cleaning to eliminate outliers and handle missing values, followed by Exploratory Data 

Analysis (EDA) to extract meaningful patterns through descriptive statistics, distribution analysis, and 

correlation heatmaps. Subsequently, the data is passed through a feature engineering pipeline, where 

feature scaling using Min-Max normalization is applied to enhance learning efficiency of model. 

Processed dataset is then split into training and testing sets, maintaining data integrity for unbiased 

evaluation. The core of the model lies in Hyperscale-Cascaded Transformer Net, a DL model that 

utilizes cascaded transformer layers to model complex temporal relationships and nonlinear degradation 

behaviors inherent in battery performance over time. The model validation and performance evaluation 

are conducted using Python software, and performance metrics are measured in terms of error metrics 

such as Mean Absolute Error (MAE) of 0.0211, Mean Square Error (MSE) of 0.0006, Root Mean 

Squared Error (RMSE) of 0.0245, and coefficient of determination (R²-score) of 0.9993. Experimental 

results demonstrate that proposed Transformer-based model outperforms traditional Machine Learning 

(ML) techniques in terms of accuracy and robustness in revolutionizing EV battery management 

systems. 
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Rezumat. Predicția precisă a duratei de viață utilă rămase (RUL) a bateriilor vehiculelor electrice (EV) este un 

aspect critic al sistemelor inteligente de gestionare a bateriilor. Predicția eficientă a duratei de viață utilă rămase 

(RUL) nu numai că asigură siguranța și fiabilitatea vehiculului, dar joacă și un rol esențial în optimizarea ciclurilor 

de încărcare, reducerea costurilor de întreținere și extinderea duratei de viață totale a bateriei. Această lucrare 

prezintă un cadru cuprinzător de Deep Learning (DL) pentru prezicerea duratei de viață utilă rămase (RUL) a 

bateriilor EV, utilizând o nouă arhitectură TransformerNet Hyperscale-Cascaded, concepută pentru a capta 

dependențele pe termen lung și modelele de degradare în comportamentul bateriei. Sistemul propus inițiază cu 

achiziția de date, în care sunt colectați parametri precum indicele ciclului, tensiunea, curentul și caracteristicile 

bazate pe timp. Datele brute sunt supuse preprocesării, care include curățarea datelor pentru a elimina valorile 

aberante și a gestiona valorile lipsă, urmată de analiza exploratorie a datelor (EDA) pentru a extrage modele 

semnificative prin statistici descriptive, analiză a distribuției și hărți termice de corelație. Ulterior, datele sunt 

transmise printr-o conductă de inginerie a caracteristicilor, unde se aplică scalarea caracteristicilor folosind 

normalizarea Min-Max pentru a îmbunătăți eficiența învățării modelului. Setul de date procesat este apoi împărțit 
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în seturi de antrenament și testare, menținând integritatea datelor pentru o evaluare imparțială. Nucleul modelului 

constă în TransformerNet în cascadă hiperscală, un model DL care utilizează straturi de transformare în cascadă 

pentru a modela relații temporale complexe și comportamente de degradare neliniară inerente performanței bateriei 

în timp. Validarea modelului și evaluarea performanței sunt efectuate folosind software-ul Python, iar indicatorii 

de performanță sunt măsurați în termeni de indicatori de eroare, cum ar fi eroarea absolută medie (MAE) de 0.062, 

eroarea pătratică medie (MSE) de 0.0006, eroarea pătratică medie rădăcină (RMSE) de 0.0093 și coeficientul de 

determinare (scor R²) de 0.9989. Rezultatele experimentale demonstrează că modelul propus bazat pe Transformer 

depășește tehnicile tradiționale de învățare automată (ML) în ceea ce privește precizia și robustețea, revoluționând 

sistemele de gestionare a bateriilor pentru vehicule electrice.  

Cuvinte cheie: predicție RUL, baterii EV, arhitectură TransformerNet în cascadă la hiperscală, EDA, 

software Python. 

Гипермасштабная каскадная инфраструктура на основе Transformernet для прогнозирования 

остаточного срока службы аккумуляторов электромобилей 
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Аннотация. Точное прогнозирование остаточного срока службы (RUL) аккумуляторов электромобилей 

(ЭМ) является критически важным аспектом интеллектуальных систем управления аккумуляторами. 

Эффективное прогнозирование остаточного срока службы (RUL) не только обеспечивает безопасность и 

надежность транспортного средства, но и играет ключевую роль в оптимизации циклов зарядки, снижении 

затрат на техническое обслуживание и продлении общего срока службы аккумуляторов. В данной работе 

представлена комплексная платформа глубокого обучения (DL) для прогнозирования остаточного срока 

службы аккумуляторов ЭМ с использованием новой гипермасштабируемой каскадной архитектуры 

TransformerNet, разработанной для выявления долгосро0чных зависимостей и закономерностей 

деградации в поведении аккумуляторов. Предлагаемая система начинается со сбора данных, в ходе 

которого собираются такие параметры, как индекс цикла, напряжение, ток и временные характеристики. 

Исходные данные проходят предварительную обработку, которая включает очистку данных для 

устранения выбросов и обработки пропущенных значений, после чего проводится разведочный анализ 

данных (EDA) для извлечения значимых закономерностей с помощью описательной статистики, анализа 

распределения и построения тепловых карт корреляций. Затем данные проходят через конвейер 

проектирования признаков, где применяется масштабирование признаков с использованием нормализации 

Min-Max для повышения эффективности обучения модели. Обработанный набор данных затем 

разделяется на обучающий и тестовый наборы, сохраняя целостность данных для беспристрастной оценки. 

Ядром модели является Hyperscale-Cascaded TransformerNet, модель DL, которая использует каскадные 

слои трансформатора для моделирования сложных временных соотношений и нелинейного поведения 

деградации, присущего производительности батареи с течением времени. Валидация модели и оценка 

производительности проводятся с помощью программного обеспечения Python, а метрики 

производительности измеряются в терминах метрик ошибок, таких как средняя абсолютная ошибка (MAE) 

0.062, среднеквадратическая ошибка (MSE) 0.0006, среднеквадратическая ошибка (RMSE) 0.0245 и 

коэффициент детерминации (R²-score) 0.9993. Экспериментальные результаты показывают, что 

предлагаемая модель на основе трансформатора превосходит традиционные методы машинного обучения 

(ML) с точки зрения точности и надежности в революционных системах управления батареями 

электромобилей.  

Ключевые слова: прогнозирование остаточного ресурса аккумуляторов, аккумуляторы электромобилей, 

гипермасштабная каскадная архитектура TransformerNet, EDA, программное обеспечение Python.

I. INTRODUCTION

Rapid developments in battery technology, 

including high stability, low self-discharge rate, 

and lightweight design, coupled with growing 

worries about climate change, have led to the 

widespread adoption of batteries in a variety of 

applications, most notably EVs. Despite the 

global growth in the hybrid and EV market, a 

critical factor for accelerating their adoption is 

improving operational efficiency [1]. Due to the 

lack of precise techniques for estimating its end of 

life, battery packs the costliest component are 

frequently utilized inefficiently or replaced too 

soon.  According to industry standards, a battery 

is said to be near the end of its life when its 

capacity drops below its initial value [2].  

However, as direct on-board measurements are 

not practical, this capability accurately 

determined by laboratory testing. Consequently, 

Battery Management Systems (BMS) in EVs 
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often rely on simplistic estimations, such as 

counting ampere-hour throughput or discharge 

cycles, which fail to account for variations in 

driving behavior, usage intensity, and 

environmental conditions like climate and terrain

[3].

EV users are increasingly concerned about

battery's health status and its RUL, as severely 

degraded batteries pose safety risks, including 

potential fire or explosion hazards. Consequently, 

it is essential for BMS to monitor RUL and 

manage battery lifespan effectively. Battery life 

management plays a pivotal role in BMS 

operation, directly influencing evaluation and 

utilization of the vehicle’s Battery Energy Storage 

System (BESS). To achieve this, it is necessary to 

understand performance variation among 

individual cells within battery pack and determine 

their current RUL [4, 5]. Nonetheless, battery 

degradation arises from complex internal 

electrochemical reactions, making the underlying 

mechanisms difficult to explain. Among these, 

electrochemical processes are a primary 

contributor to performance decline. Additionally, 

external parameters such as current and 

temperature further exacerbate degradation [6].

A more precise and adaptable method for 

predicting the RUL of batteries extend their 

service life significantly by ensuring replacement 

only when truly necessary [7]. It would also 

enhance understanding of how different operating 

conditions influence battery aging. Semi-

empirical or empirical models for capacity loss, 

usually based on metrics like State of Charge 

(SOC) and C-rate, are frequently used in current 

BMS implementations.  Nevertheless, these 

models lack stochastic components and are 

typically deterministic [8].  By accounting for the 

inherent unpredictability in aging data, a 

stochastic model, proposed in this study offers a 

more reliable estimate. Moreover, ML techniques 

are increasingly being explored for battery 

prognostics, showing promising accuracy in 

predicting capacity loss from operational data [9, 

10]. 

A. Related Works

Shaheer Ansari et al (2021) [11] have 

proposed a Multi-Channel Profile (MCI) based 

Artificial Neural Network framework for 

predicting the RUL of EV lithium-ion batteries. 

The MCI-based ANN captures different battery 

degradation patterns. The model, however, has a 

high generalization ability when a large amount of 

data is used for training but its accuracy becomes 

lower with a small number of training datasets, 

thus, its scalability is limited.

Luis Magadán et al (2023) [12] have 

implemented Bi-directional Long Short Term 

Memory (BiLSTM) based prediction of RUL of 

bearings in electric motors. It combines BiLSTM

network for sequence learning and RUL 

prediction. However, the dependency on dataset-

specific feature distributions pose a problem for 

the method's flexibility when it is used on motors 

with very non-stationary signals or for the 

detection of new types of bearing faults, thus, 

more extensions are needed for a bigger scale.

Kai Li et al (2020) [13] have introduced fuzzy 

logic (FL) in making battery life predictions more 

accurate for EVs with the use of charging cloud 

data. FL makes the prediction process more robust 

and accurate, thus the estimation errors are less 

than 4% for the whole sampled EV datasets,

support the stabilization of battery life estimation 

even if the cloud data are uncertain and noisy. 

However, the requirement for predefined fuzzy

rules and membership functions restrict the 

battery-to-battery adaptability when different 

chemistries or highly variable operating 

environments are considered.

Dexin Gao et al (2023) [14] have presented 

one Dimensional Convolutional Neural Network 

(CNN)-Bi-directional Long Short Term Memory 

(1D-CNN-BiLSTM) for forecasting RUL of 

lithium-ion batteries in EVs. The CNN module 

digs deep features from state-of-health (SOH) 

data in a very effective manner, whereas the 

BiLSTM unit gets the temporal dependencies in 

both the past and the future thus it can learn the 

sequence robustly. This hybrid model not only 

features the best characteristics of both worlds but 

requires high computational resources and 

extensive training data, which limit its scalability 

across diverse battery chemistries and operating 

conditions.

Contributions of the proposed EV battery RUL 

prediction system are given below:

o The data cleaning improves data credibility 

by eliminating outliers, interpolating missing 

values, and dampening noise to provide high-

quality input for model training.

o EDA exposes latent patterns of degradation 

and feature correlations with statistical 

profiling, distribution mapping, and 

correlation heatmaps.

o Min-max scaling based feature engineering 

scales input features to a bounded range [0, 1] 

to enhance learning stability and ensure

consistent model convergence.



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

112

The hyperscale-cascaded TransformerNet

models sophisticated temporal relationships and 

non-linear degradation patterns with a deep, 

multi-block transformer framework that includes 

hierarchical attention.

This paper has following structure:  Proposed 

framework's design and component parts are 

described in Section 2.  Development and 

validation of RUL estimation model and capacity

loss model are covered in Section 3.  Results of 

entire proposed framework are shown in Section 

4, and the paper is concluded with a summary of

results and key takeaways in Section 5.

II. PROPOSED SYSTEM DESCRIPTION

The proposed block diagram of Hyperscale 

cascaded TransformerNet based framework for 

RUL prediction in EV batteries is shown in Fig.

1. 

Fig. 1. Proposed RUL prediction system for EV batteries. 

The EV battery multi variate time-series data 

such as cycle index, voltage, current and time-

stamped operating metrics are collected. These 

raw data attained from on-board sensors or BMS, 

then preprocessed comprising of fundamental 

data cleansing steps like outlier deletion, missing 

value interpolation, and noise suppression by 

means of smoothing filters. The preprocessing 

approach ensures data reliability and integrity, 

which are instrumental for learning downstream. 

After preprocessing, the data is visualized using 

EDA, where statistical profiling, distribution 

mapping, and correlation heatmaps are created,

reveals hidden patterns and associations between 

features. The visualized features, are normalized 

into specific range by min-max normalization. 

Then, data is split into training and testing sets, 

preserving chronological integrity for ensuring 

unbiased performance evaluation. Training set is 

employed to tune model parameters, and testing 

set is used to test generalization ability. 

Hyperscale-cascaded TransformerNet 

architecture, a DL architecture with repeated 

transformer blocks structured in a cascaded 

hierarchy. Every transformer block consists of 

multi-head self-attention mechanisms, feed-

forward layers, and positional encoding schemes 

that allow the model to learn long-range temporal 

dependencies and nonlinear degradation paths in 

battery dynamics.

III. PROPOSED SYSTEM MODELLING

A. Data Acquisition

The data acquisition phase kicks off the 

predictive pipeline by retrieving various 

operational parameters from EV battery systems. 

Some of the time-series data include cycle index, 

voltage, current, and other time-dependent 

features, which are recorded through embedded 

sensors in the battery management infrastructure. 

The acquisition layer is a specialized subsystem 

tasked with logging and forwarding these signals 
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to a centralized repository for data. It doesn't 

include the storage server itself, which belongs to 

downstream data analysis module.

New generation EV controllers are able to 

stream internal diagnostic signals e.g., 

charge/discharge rates, temperature profiles, and 

impedance metrics via socket-based 

communication protocols. The design enables 

data transmission in real-time or event-driven, 

depending on whether an external monitoring 

agent opens the connection. In this system, the 

data server controls the data acquisition process 

by deciding when to start or end data gathering 

and which battery modules or vehicle units to 

capture. This scalable and flexible 

communication configuration provides high-

fidelity battery health data for ongoing 

preprocessing and predictive modelling.

B. Data Preprocessing

Data Cleaning

Smart meter datasets may have missing 

entries, noise, and anomalous readings owing to 

sensor faults or transmission errors. All missing 

values and detected outliers are replaced with the 

average energy use measured at the same hour on 

the previous day and the last good timestamp, 

maintaining temporal continuity and minimizing 

bias.

Exploratory Data Analysis

(a) Descriptive Statistics

Aggregate statistics like mean, median, 

standard deviation, and range are calculated to 

gain insight into central tendencies and variability 

in consumption patterns.

(b) Distribution Analysis

Histograms and density plots for visualizing 

spread and skewness of energy consumption over 

time assist in detecting non-Gaussian behavior or 

seasonal patterns.

(c) Correlation Heat maps

Pairwise correlation matrices are plotted to 

investigate the relationships between variables 

like hourly consumption, temperature, and day-

of-week indicators. This supports feature 

selection and dimensionality reduction.

C. Feature Engineering (Min-Max Scaling) 

To mitigate for the effects of scale differences 

in input data and improve prediction model 

performance, normalization is employed to map 

raw features into a bounded range. This provides 

stable scaling and maintains the learning process 

steady.

Take an input sequence of energy 

consumption:

 1 2, , , nx x x x=     (1)

Where, ( )n is the length of the sequence, each 

component ( )ix is normalized with the min-max 

scaling function:

' i min

i

max min

x x
x

x x

−
=

−
                   (2)

In the same fashion, for the output variables ( )'iy , 

the transformation is:

( )' i min

i

max min

y y
y

y y

−
=

−
           (3)

, , ,min max min maxx x y y are the minimum and 

maximum limits of the respective variables. The 

normalized inputs ( )'ix and outputs ( )'iy obtained 

range between [0, 1] so that they become 

compatible with activation functions and also 

facilitate better convergence during training.

D. Train and Test Split

The datasets are divided into two segments for 

model prediction analysis: 70% is designated for 

training the model, while the remaining 30% is 

reserved for testing its performance. The final 

model configuration is selected based on its 

accuracy achieved during the training phase.

E. Hyperscale Cascaded Transformer Net

Embedding Layer

In the novel Hyperscale-Cascaded 

TransformerNet approach to predict RUL of 

battery, the embedding layer is the first 

transformation phase that converts raw input 

sequences into a deep temporal modelling–

friendly format. The input data is extracted using 

a sliding window strategy and organized as a 

batch of sequences of shape, B L FX   where B

is batch size, L is window length, and F is the 

number of battery health indicators.

The input is projected into a higher-

dimensional representation B L D  , enabling the 

transformer encoder to capture subtle degradation 

patterns. Each input feature is converted to an 

embedding vector using a linear transformation:

eE XW= (4)
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Where, F D

eW  is a learnable embedding 

weight matrix. This operation maps each battery 

feature into a dense vector space that is more 

suitable for temporal learning.

Positional Encoding

Positional encoding introduces temporal order 

information into the input embeddings, allowing 

the model to differentiate between identical 

values occurring at different cycle indices. A 

sinusoidal positional encoding scheme is 

employed, defined as:

( )
2 /

, 2
10000 i D

pos
PE pos i sin

 
=  

 
      (5)

( )
2 /

, 2 1
10000 i D

pos
PE pos i sin

 
+ =  

 
(6)

Where 𝑝𝑜𝑠 denotes the time-step index, 𝑖 is the 

embedding dimension index, and D is the 

embedding dimension. The positional encoding 

vectors are element-wise added to the input 

embeddings, ensuring the transformer retains 

temporal degradation ordering.

Transformer Block

The transformer encoder employs Multi-Head 

Self-Attention (MHSA) as given in fig.2, to 

capture long-range dependencies in battery 

degradation sequences.

Each embedded input is linearly projected into 

Query (Q), Key (K), and Value (V) matrices:

𝑄 = 𝑍𝑊𝑄 , 𝐾 = 𝑍𝑊𝐾, 𝑉 = 𝑍𝑊𝑉 (7)

Where, 𝑍 ∈ ℝ𝐿×𝐷 is reshaped input tensor and 

𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are learnable parameters.

From fig.3, the Q, K, and V matrices are split 

into ℎ attention heads:

 
1

, , , ,
H

h h h h
Q K V Q K V

=
→ (8)

Fig. 2. Q, K, and V matrices generation. 

Fig. 3. The input data passes through a weight 

matrix.

Fig. 4. Splitting of the Q, K, and V matrices.

Fig. 4, each head computes scaled dot-product 

attention:

( ), ,
T

i h

h h h h

k

Q K
Attention Q K V Softmax V

d

 
=  

 
 

(9)

Where, kd is the key dimensionality used to 

stabilize gradient propagation.



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

115

Fig. 5. Division of the attention head matrix.

The outputs of all heads are concatenated and 

linearly projected as displayed in fig.5:

( ) ( )1, , H OMHSA Z Concat head head W=  (10)

This process enables model to focus on several 

degradation patterns at once, enhancing its 

capacity to generalize across a wide range of 

battery health traces.

Multi-Layer Perceptron (MLP)

Following MHSA, a two-layer MLP refines 

the learned features using nonlinear 

transformations:

( ) ( )1 1 2 2MLP X XW b W b= + + (11)

Where, 1 2,W W are weight matrices, 1 2,b b are 

bias vectors, and ( )  denotes a nonlinear 

activation function.

This layer boosts the ability of the model to 

learn sophisticated degradation dynamics and 

nonlinear interactions between battery features.

Layer Normalization and Residual Connections

Layer Normalization (LN) is applied prior to 

both MHSA and MLP blocks, and residual 

connections are incorporated to preserve gradient 

flow:

( )( )Y X Block LN X= + (12)

This design improves convergence stability 

and ensures sensitivity to battery health 

variations.

Feedforward Network Layer:

The feedforward network increases 

representational capacity while maintaining 

computational efficiency by using an expansion 

factor of two:

( ) ( )( )2 1 1 2FFN X Dropout W ReLU W X b b= + (13)

Here, ( )X is the input feature matrix, and 

( )1 2,W W represent weight matrices for the first 

and second linear layers, respectively. The bias 

vectors ( )1b and ( )2b are added to provide 

translation in the feature space. The first 

transformation
1

modeldff d
W R


 increases the input 

dimension ( )modeld to an intermediate dimension

2 modeldff d=  . Where the first linear layer 

expands the feature dimension and the second 

compresses it back to the original hidden size.
The Fig. 6 depicts the proposed hyper scale-

Cascaded TransformerNet in predicting battery 

RUL. 

Cascaded Transformer Block

The cascaded transformer block enhances 

RUL prediction by computing queries in the 

frequency domain while preserving keys and 

values in the temporal-spatial domain, enabling 

simultaneous modelling of long-term degradation 

trends and localized temporal dynamics. Consider 

the normalized battery health indicator is 

expressed as,
L CX  (14)

Where, L represents temporal window length 

and C denotes number of feature channels.

Stage 1: Temporal-Spatial Attention 

Construction

In the first stage, the input tensor is projected 

into query, key, and value representations using 

point-wise and depth-wise convolutions:

( )  ( )  ( ) 1 3 1 1 3 1 1 3 1Φ ,    Φ ,   Φ ,Q X K X V X  = = =

(15)

Where, ( )1ψ  denotes 1 1 point-wise 

convolutions for channel mixing and ( )3Φ 

represents depth-wise convolution with kernel size 

3 for local temporal feature extraction. 

The attention mechanism proceeds as follows:

( )( )1 1 1 1ψ , ,X Attention Q K V=      (16)
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Stage 2: Frequency-Domain Feature Processor 

(FDFP)

In the second stage, only the query tensor is 

transformed into the frequency domain to capture 

global degradation characteristics, while keys and 

values remain in the temporal domain:

( )( )1

2 1Q Q−=      (17)

Fig. 6. Hyper scale-Cascaded TransformerNet. 

Where, ( ) and ( 1) ( )F −  denote the 1D Fast 

Fourier Transform (FFT) and inverse FFT, 

respectively, and is a frequency mask 

emphasizing degradation-relevant bands.

Formal Definition of Frequency-Domain 

Operators:

The 1D Discrete Fourier Transform (DFT) of 

a temporal signal  x n of length 𝐿 is defined as:

   
1

2 /

0

L
j fn L

n

X f x n e 
−

−

=

= , 0, , 1f L=  − (18)

The Fast Fourier Transform (FFT), denoted by

( ) , is an efficient computational realization of 

the DFT.

The inverse DFT (IDFT), implemented via 

inverse FFT ( )1−  , reconstructs the time-domain 

signal:

   
1

2 /

0

1 L
j fn L

j

x n X f e
L


−

−

=

=  (19)

Frequency Masking and Degradation Bands

The operator M denotes a frequency-domain 

mask that selectively emphasizes degradation-

relevant spectral components:

( )
1,  

0,  

degf
M f

otherwise


= 


(20)

Here, deg typically corresponds to:

Low-frequency bands: long-term aging and 

capacity fade

Mid-frequency bands: cyclic operational stress

High-frequency bands: noise and transient 

disturbances

This selective filtering ensures that the 

frequency-enhanced queries retain meaningful 

degradation information while suppressing 

irrelevant noise.

The frequency-enhanced queries are then used 

in attention computation:

( )2 1 1, ,X Attention Q K V X= +    (21)
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Here, is a learnable scaling parameter that 

adjusts attention strength.

Spatio-Spectro Fusion-Based Attention for 

Temporal Feature Enhancement

To avoid propagating redundant temporal 

information, the Spatio-Spectro Fusion-Based 

Attention Block (SSFB) integrates spatial and 

spectral cues. The encoder feature 𝐸 is processed 

as:

( )( )1 ,DY Conv SSFB E D=      (22)

SSFB operates through parallel spatial and 

frequency pathways:

( ) ( ) ( )( ),SSFB X Concat Spatial X Spectral X= (23)

Adaptive kernel sizing prevents over-

smoothing:

( )2log
1

2

C
k = + (24)

Hybrid Fourier-Spatial Upsampling for RUL 

Feature Reconstruction

A hybrid upsampling strategy is used to 

reconstruct high-resolution degradation features: 

Fourier-Domain Upsampling: 

Zero-padding is performed on the frequency 

coefficients: 

( )
( ) , 

0,  

max

up

X f f f
X f

otherwise


= 


(25)

then the inverse FFT is performed, allowing 

the recovery of smooth long-term degradation 

trends. 

Pixel-Shuffle Spatial Upsampling: 

The channel information is rearranged into a 

higher temporal resolution, thus the local 

transitions and cycle-level variations are better. 

The hybrid method here is able to keep global 

aging patterns as well as the fine-grained temporal 

details, thus the accuracy and robustness of 

battery RUL prediction have been enhanced.

IV. RESULT AND DISCUSSION

This section outlines the main results through 

graphical results plotted in the form of Python-

generated plots that give easy insight into the 

working of the system. Additionally, comparative 

analysis across datasets as well as classifier 

systems is given, emphasizing the improved 

efficiency of proposed method with respect to 

state-of-the-art methods currently popular.

Table 1 Dataset Description.

Dataset Details

Dataset name
Battery Remaining Useful 

Life (RUL)

Train Ratio 80%

Test Ratio 20%

No. of. Columns 15064

No.of. Rows 9

Data Source

Publicly available Kaggle 

dataset for battery 

remaining life prediction

Number of 

Batteries

The underlying data 

represent measurements 

from 14 individual lithium-

ion batteries (NMC-LCO 

18650 cells) that are cycled 

until failure.

Number of 

Cycles

Each battery is subjected to 

repeat charge–discharge 

cycles (typically on the 

order of hundreds to over a 

thousand cycles) until 

degradation to end-of-life, 

allowing RUL to be 

computed for each cycle.

Table.1 displays the proposed research utilizes 

Battery Remaining Useful Life (RUL) dataset, 

and data has been divided into training and testing 

sets with 80% and 20% ratio, fig.7 for ensuing 

model evaluation is robust. It contains 

measurement in the form of 9 rows and 15, 064 

columns, representing data collected from 14 

lithium ion batteries are cycled to repeat 

charge/dis-charge cycles until the batteries are 

completely degraded. This datasets serves as a 

solid foundation to model battery degradation and 

development of proposed predictive model for 

estimating battery lifespan in energy storage 

applications. 

Fig.7. Train-Test data splitting. 
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Table 2 Feature Set and Target Variable for 

Battery RUL Modelling.

Cycle 

Index

Features

F1 Discharge Time (s)

F2 Time at 4.15 V (s)

F3 Time Constant Current (s)

F4 Decrement 3.6–3.4 V (s)

F5 Maximum Discharge Voltage (V)

F6 Minimum Charge Voltage (V)

F7 Charging Time (s)

Target 

Variable 

(RUL)

The Remaining Useful Life (RUL)

In table.2, dataset contains a set of features 

describing voltage and current behavior of 

lithium, ion batteries during their 

charge/discharge cycles. These are standard 

inputs in RUL modeling tasks.

Cycle Index is the sequential cycle number, 

and features like Discharge Time (F1), Time at 

4.15 V (F2), and Time Constant Current (F3) 

represent the time intervals of the discharge and 

charging phases. 

Decrement 3.63.4 V (F4) is the time for the 

voltage drop to occur within the critical range, and 

Maximum Discharge Voltage (F5) together with 

Minimum Charge Voltage (F6) give the voltage 

limits that show the battery's health. 

Charging Time (F7) and Total Time are also 

measures of the energy transfer processes' 

duration. 

These features, describe the electrochemical 

performance and decay of the batteries. The target 

variable is RUL, number of cycles through which 

the battery able to function until the end of life.

Fig. 8. Top longest charging times. 

Fig. 8 presents the top 10 longest charging 

times across battery cycles in EV RUL dataset, 

indicating the top 10 battery cycles with the 

highest charging times in seconds. Each bar is 

assigned to a particular cycle index, and the x-axis 

is used for charging time and the y-axis for rank 

order from 1 to 10. \

The visualization shows extreme variation in 

charging patterns between cycles, with many 

instances especially cycle indices 1108, 1114, 

1105, and 1108 having prolonged charging times.

Fig. 9. Top shortest discharge times. 

Fig. 9 represents the top 10 shortest discharge 

times through EV battery cycles, exhibiting the 

shortest discharge time’s cluster around cycle 

indices 200, 400, and 500, where the minimum is 

seen nearest cycle index 200.

The shortened discharge times indicate lower 

energy retention, capacity degradation, or sudden 

voltage drops, all precursors to prompt aging. 

Fig. 10. Charging time ratio over cycles.

Fig. 10 displays the charging time ratio over 

cycles, it visually summarizes the temporal trend 

and anomalies in the charging pattern of a battery 

throughout its lifetime. The ratio of charging 

times is a sensitive measure of battery health, with 

well-behaved low values indicating normal use 

and spike-like occurrences like those at cycle 

indices 300 to 700 indicating possible degradation 

events, rising internal resistance, or heat stress. 

Detection of such outliers is very important for 

early fault detection and precise estimation of 
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RUL. 

Fig. 11. Discharge time distribution. 

Fig. 11 visualizes the temporal nature of 

battery discharge behavior over periods of 

operation. The histogram indicates that most 

discharge events take place in shorter time 

periods, with a dense concentration toward the 

initial discharge time. In the TransformerNet 

approach uses this discharge time data to learn 

latent representations of battery life, employing 

its multi-head attention mechanism to attend to 

both common short-duration events and the less 

common long-duration outliers. These temporal 

features are combined in the cascaded architecture 

to increase the robustness and granularity of RUL 

prediction. 

Fig. 12. Minimum voltage charged Vs RUL. 

Fig. 12 illustrates the correlation between the 

minimum voltage charged and the remaining 

useful life of the battery, which exhibits an 

evident downward trend as RUL reduces. This 

reduction in minimum voltage is an indicator of 

progressive battery degradation, where lower 

voltage cut-offs indicate reduced capacity and 

rising internal resistance. The novel 

TransformerNet framework, establishes the 

predictive significance of voltage-based features, 

which are intrinsically electrochemically and 

thermally stress-sensitive and illustrates the 

capacity of the model to learn long-range 

dependencies and non-linear degradations 

through its cascaded attention mechanism. 

Fig. 13. Distribution of RUL values. 

Fig.13 demonstrates the histogram overlaid 

with a line plot, showing the frequency 

distribution of RUL values in the dataset. The x-

axis reflects the RUL in cycles, whereas the y-axis 

reflects the frequency of occurrence. The 

distribution is seemingly even, with a dip towards 

the 700-cycle point, potentially indicating a 

region of data sparsity or a phase shift in battery 

decline. Through both dense and sparse areas of 

the RUL spectrum, the model is able to better 

predict failure onset and learn to adjust its 

attention to key time periods.

Fig. 14. Density plot of RUL. 

Fig.14 reveals the probability density of RUL 

values throughout the dataset, providing a 

smooth, continuous flow of how often various 

RUL values are observed. The curve has a fairly 

flat top between 0 and 1000 cycles with minor 

dips at 250 and 750, and steep drop-offs at the 

extremes, which exhibits that most of the battery 

samples are in a middle operational lifespan 

range. The hyperscale-cascaded architecture is 

intended to deal with sophisticated, non-uniform 

distributions such as this one by dynamically 

modulating its attention on multiple temporal 

scales. 
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Fig. 16. RUL distribution in train and test sets. 

Fig. 16 shows that the scaled distribution of 

RUL values over the training and test sets, 

providing information regarding the statistical 

balance and representational coverage of training 

and test data employed to train and test model. 

The hyperscale-cascaded structure, with its multi-

head attention and hierarchical temporal 

modelling, is precisely tailored to learn from such 

rich input patterns. 

Fig. 17. Final test metrics. 

Fig. 17 presents four important measure

metrics R², RMSE, MAE, and MSE which 

together evaluate the predictive strength and 

dependability of the model. The extremely high 

R² value of 0.9989 reveals that the model accounts 

for almost all the variance present in the RUL 

data, reflecting an excellent fit. In contrast, the 

very low error measures (RMSE: 0.0093, MAE: 

0.0062, MSE: 0.0001) prove that the proposed 

hyperscale-cascaded TransformerNet model's 

predictions are accurate and regular, with 

negligible deviation from true values.
Fig. 18 represents the comparative line 

between actual RUL values (solid blue line) and 

predicted RUL values (dashed orange line) over a 

series of sample indices. The minimum variation 

in actual and predicted values throughout the 

sample range shows that the model generalizes 

and is robust even under situations of operating 

variability.

Fig.19 displays the ablation experiments 
comparing three transformers, based models: 

Cascaded Transformer, HyperScale Transformer 
and HyperScale Cascaded Transformer.

Fig. 18. Actual and Predicted values. 

Each model is assessed by four performance 

metrics, including the R Score, MSE, MAE, and 

RMSE. From table.3, results indicate that the 

HyperScale Cascaded Transformer boasts the 

highest predictive accuracy with an R Score of 

0.9993 with the lowest error values in all metrics 

(MSE: 0.0006, MAE: 0.0211, RMSE: 0.0245) 

results in better model convergence as well as 

lower prediction error in the forecasting task.

The evaluation of regression results between 

the HyperScale Cascaded Transformer and other 

current architectures (DNN and DenseNet) as 

presented in Fig 20 and Table 4 shows that the 

HyperScale Cascaded Transformer model 

provides an increased level of accuracy with a 

corresponding R² score and overall lower error 

based on all of the error metrics MSE of 0.0006, 

MAE of 0.0211, and RMSE of 0.0245 which 

points to the increased accuracy and stability of 

the predictive model.

Table.5 illustrates comparative analysis of 

different RUL prediction models in terms of their 

RMSE values. Out of the enumerated models, 

conventional methods like Artificial Neural 

Network-Random Forest-K‑Nearest Neighbours-

Gradient Boosting Decision Tree ANN-RF-

KNN-GBDT [15], LSTM-Support Vector 

Machine (SVM) [16], Extreme Gradient 

Boosting-Light Gradient Boosting Machine, 

XGBoost-LightGBM [20] and1D-CNN-BiLSTM 

[14] provides RMSE values of 11.007 to 0.8306, 

respectively, indicating low accuracy in achieving 

nonlinear degradation patterns. The proposed 

hyper scale-cascaded transformer net 

demonstrates a much lower RMSE of 0.0245, 

surpassing all other models. This huge reduction 

indicates model's capacity to catch both short-

term fluctuations and long-term degradation 
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patterns via its multi-block transformer hierarchy 

and frequency-aware attention modules.

Fig. 21 visualizes the comparison of prediction 

error among prediction models employing MAE 

as the metric of evaluation. The developed model 

presents the lowest MAE of 0.0211, reflecting 

better accuracy in predicting battery RUL, 

reflecting the stability and accuracy of the 

developed architecture, which renders it highly 

appropriate for real-time battery health 

monitoring and predictive maintenance in electric 

vehicle use.

Fig.19. Ablation Studies.

Table.3 Ablation Study of Transformer-Based Architectures

Ablation Study 

Model R2-score MSE MAE RMSE

Cascaded Transformer 0.95 0.008 0.08 0.0894

HyperScale Transformer 0.988 0.002 0.035 0.0447

HyperScale Cascaded Transformer 0.9993 0.0006 0.0211 0.0245
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Fig.20. Comparison with existing model.

Table.4. Comparison of Regression Metrics with existing models.

Comparative analysis

Model R2-score MSE MAE RMSE

DNN 0.94 0.0018 0.0387 0.0424

DenseNet 0.96 0.0013 0.0321 0.0361

HyperScale Cascaded Transformer 0.9993 0.0006 0.0211 0.0245

Table 5 Comparison of RMSE

Prediction Model RMSE

ANN-RF-KNN-GBDT [15] 11.007

LSTM-SVM [16] 6.9422

XGBoost-LightGBM [20] 0.94

1D-CNN-BiLSTM [14] 0.8306

Proposed 0.0245

Fig. 22 demonstrates a comparative study of 

MSE values for three predictive models LSTM-

SVM) [16], RF [20], and the proposed technique, 

emphasizing the better accuracy of the recently 

proposed framework. The RF [20] model has the 

greater MSE at 1.67, showing high variance 

between estimated and actual values. The MLP 

[19] model with an MSE of 48.1941, presenting 

improved learning capability but still poor 

precision. 

Fig. 23. Comparison of R2-Score. 

Fig. 21. Comparison of MAE. 

Fig. 22. Comparative analysis of MSE. 

Conversely, the proposed model has a very 

low MSE of 0.0006, which indicates confidence 

and forecasting accuracy of the proposed 

architecture, confirming its suitability for high-

resolution battery RUL estimation and smart 

energy system prediction.

Fig. 23 compares the predictive ability of R²-

score for different algorithms in predicting battery 

RUL. Out of the models compared proposed 

approach reflects better precision, with an R²-

score of 99.93%, highlighting the superiority of 
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hyperscale-cascaded TransformerNet architecture 

in learning intricate temporal relations and 

degradation modes in EV battery data and 

yielding highly accurate and interpretable RUL 

predictions critical for predictive maintenance 

and energy optimisation.

V. CONCLUSION

This research presents a battery lifespan 

prediction system on the basis of a hyperscale-

cascaded TransformerNet model that accurately 

captures the nonlinear dynamics of battery aging. 

The new model has very accurate predictions for 

differing battery capacity conditions and is 

extremely applicable for implementation in actual 

scenarios like data centres and grid-scale battery 

energy storage systems, where batteries are main 

energy storage or backup units. Model validation 

and performance testing were performed using 

Python, and the framework yielded a MAE of 

0.0211, MSE of 0.0006, RMSE of 0.0245, and an 

R²-score of 0.9993. These performances identify 

the model's computational efficacy and 

adaptability for real-time battery health 

monitoring. In comparison to conventional ML 

methods, the Transformer-based method provides 

better accuracy and resilience, marking a 

milestone in EV battery management systems. To 

further improve predictive dependability, the next 

phase of research will investigate a wider variety 

of optimization techniques for predicting 

remaining battery capacity, incorporate more 

sophisticated feature selection algorithms, and 

examine domain-adaptive learning mechanisms 

to support various operating profiles and 

environmental scenarios.
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