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Hyperscale-Cascaded Transformer-Net-Based Framework for Remaining
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Abstract. The accurate prediction of remaining useful life (RUL) of electric vehicle (EV) batteries is a
critical aspect of intelligent battery management systems. Effective RUL prediction not only ensures
vehicle safety and reliability but also plays a pivotal role in optimizing charging cycles, reducing
maintenance costs, and extending the overall battery lifespan. This work presents a comprehensive Deep
Learning (DL) framework for predicting RUL of EV batteries, using a novel Hyperscale-Cascaded
Transformer Net architecture designed to capture long-term dependencies and degradation patterns in
battery behavior. The proposed system initiates with data acquisition, wherein parameters such as cycle
index, voltage, current, and time-based features are collected. Raw data undergoes preprocessing, which
includes data cleaning to eliminate outliers and handle missing values, followed by Exploratory Data
Analysis (EDA) to extract meaningful patterns through descriptive statistics, distribution analysis, and
correlation heatmaps. Subsequently, the data is passed through a feature engineering pipeline, where
feature scaling using Min-Max normalization is applied to enhance learning efficiency of model.
Processed dataset is then split into training and testing sets, maintaining data integrity for unbiased
evaluation. The core of the model lies in Hyperscale-Cascaded Transformer Net, a DL model that
utilizes cascaded transformer layers to model complex temporal relationships and nonlinear degradation
behaviors inherent in battery performance over time. The model validation and performance evaluation
are conducted using Python software, and performance metrics are measured in terms of error metrics
such as Mean Absolute Error (MAE) of 0.0211, Mean Square Error (MSE) of 0.0006, Root Mean
Squared Error (RMSE) of 0.0245, and coefficient of determination (R2-score) of 0.9993. Experimental
results demonstrate that proposed Transformer-based model outperforms traditional Machine Learning
(ML) techniques in terms of accuracy and robustness in revolutionizing EV battery management
systems.

Keywords: RUL prediction, EV batteries, hyperscale-cascaded Transformer Net architecture,
exploratory data analysis, Python software.
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Rezumat. Predictia precisa a duratei de viata utild rdmase (RUL) a bateriilor vehiculelor electrice (EV) este un
aspect critic al sistemelor inteligente de gestionare a bateriilor. Predictia eficientd a duratei de viata utila rdmase
(RUL) nu numai ca asigura siguranta si fiabilitatea vehiculului, dar joaca si un rol esential in optimizarea ciclurilor
de incarcare, reducerea costurilor de intretinere si extinderea duratei de viata totale a bateriei. Aceasta lucrare
prezinta un cadru cuprinzator de Deep Learning (DL) pentru prezicerea duratei de viata utila ramase (RUL) a
bateriilor EV, utilizdind o noud arhitecturd TransformerNet Hyperscale-Cascaded, conceputa pentru a capta
dependentele pe termen lung si modelele de degradare in comportamentul bateriei. Sistemul propus initiaza cu
achizitia de date, in care sunt colectati parametri precum indicele ciclului, tensiunea, curentul si caracteristicile
bazate pe timp. Datele brute sunt supuse preprocesarii, care include curdtarea datelor pentru a elimina valorile
aberante si a gestiona valorile lipsd, urmata de analiza exploratorie a datelor (EDA) pentru a extrage modele
semnificative prin statistici descriptive, analiza a distributiei si harti termice de corelatie. Ulterior, datele sunt
transmise printr-o conductd de inginerie a caracteristicilor, unde se aplica scalarea caracteristicilor folosind
normalizarea Min-Max pentru a imbunatati eficienta invatérii modelului. Setul de date procesat este apoi impartit
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in seturi de antrenament si testare, mentinand integritatea datelor pentru o evaluare impartiala. Nucleul modelului
constd in TransformerNet in cascada hiperscala, un model DL care utilizeaza straturi de transformare in cascada
pentru a modela relatii temporale complexe si comportamente de degradare neliniara inerente performantei bateriei
in timp. Validarea modelului si evaluarea performantei sunt efectuate folosind software-ul Python, iar indicatorii
de performanta sunt masurati in termeni de indicatori de eroare, cum ar fi eroarea absolutd medie (MAE) de 0.062,
eroarea patratica medie (MSE) de 0.0006, eroarea patraticd medie radacind (RMSE) de 0.0093 si coeficientul de
determinare (scor R?) de 0.9989. Rezultatele experimentale demonstreaza ca modelul propus bazat pe Transformer
depaseste tehnicile traditionale de Invatare automata (ML) 1n ceea ce priveste precizia si robustetea, revolutionand
sistemele de gestionare a bateriilor pentru vehicule electrice.

Cuvinte cheie: predictie RUL, baterii EV, arhitectura TransformerNet in cascada la hiperscala, EDA,
software Python.

I'mnepmacmraénasi kackagHasi HHQpacTpykTypa Ha ocnoBe Transformernet 1Jist nporao3upoBanust
O0CTATOYHOI'0 CPOKA CJIYKObI AKKYMYJIITOPOB 3JIEKTPOMOOHIeii
IInpa l'anem Yunrxaxyna, °I'. Carbs Hapasina, }JI Muny, *Y. Parxasa Pexan, 'T. Jlaxapn
1I/IH>1<eHepH0-TeXHonorlzlqecKI/H‘/'I nHCTHTYT ['omaBapu (A), Pamkamannpu, Uaans
T oGanbHbIH yHuBepcuret ['ogaBapu, Pamxamanapu, Uuaus

Annomayusn. TodHOE TIPOTHOZUPOBAHIE OCTATOYHOTO Cpoka ciryk0bl (RUL) akkyMyiIsaTOpOB 311eKTpOoMOOHIIei
(OM) sBnsieTcs KPUTHYECKH BAKHBIM ACIIEKTOM HHTEIJIEKTYalbHBIX CHCTEM YIPaBICHUS aKKyMyJSTOPaMH.
D¢ dexTnBHOE MPOrHO3UPOBAHKE OCTATOYHOTO Cpoka ciryk0bI (RUL) He Tonpko obecnieunBaeT 6€30MacHOCTD U
HaJIeXKHOCTb TPAHCIIOPTHOTO CPEJICTBA, HO M UTPAET KIFOUEBYIO POJIb B ONTHMM3ALIUH ITUKIIOB 3apsAKH, CHIDKEHUH
3aTpaT Ha TEXHUYECKOe 00CITy>KUBaHUE U MPOIJICHUH OOIIEro cpoka ciyXO0bl akKyMyJsiTopoB. B nanHoit pabore
Npe/ICTaBIeHa KOMIUIEKCHas Iu1aTdopma riryookoro odyuenust (DL) a1 mporHo3upoBaHusi OCTaTOYHOTO CPOKa
CIIy’KOBbl aKKyMyJIITOPOB OM ¢ HCIOJb30BAaHHEM HOBOM THIIEPMAacIITA0MPYeMO#l KacKaJHOW apXHTEKTYphI
TransformerNet, pa3pabotaHHOi [y BbIBICHUS A0NrocpoOuHBIX 3aBHCHMOCTEH M 3aKOHOMEPHOCTEH
JeTpajialiid B TIOBEJCHUHM akKKyMyisiTopoB. [Ipeanaraemas cucTemMa HadMHAEeTCs cO cOOpa MaHHBIX, B XOJE
KOTOpOTO COOMpAIOTCS TaKHe MapaMeTphl, KaK WHIEKC IUKJIA, HAIPSHKEHUE, TOK U BPEMEHHBIC XapaKTEPHCTHKH.
Vcxonuple maHHBIE NPOXOIAT IPEIBApUTEIBbHYI0 00pabOTKYy, KOTOpas BKIIOYAET OYHCTKY JaHHBIX JUIS
yCTpaHEeHHUs] BHIOPOCOB M 0OpabOTKH MPOMYIIEHHBIX 3HAYCHHUH, MOCIIE YeTro MPOBOIMUTCS Pa3BENOYHBIN aHAIH3
naaHbIX (EDA) 1t u3BiieueHns 3HaYMMbIX 3aKOHOMEPHOCTEH ¢ TIOMOIIBIO OIMCATEIbHON CTATUCTUKH, aHAIHN3a
pacmpesienieHuss W TOCTPOEHMS TEIUIOBBIX KapT KOppeisinuil. 3aTeM JaHHbIE INPOXOIIT depe3 KOHBeiep
MIPOEKTUPOBAHUS IIPU3HAKOB, I'Ie TPUMEHIETCA MacIITaONPOBaHKE IPU3HAKOB C NCIIOIb30BaHUEM HOPMaAJIN3AIIH
Min-Max s moBeiieHnst 3(GhekTHBHOCTH 00ydeHuss Mojend. OOpaboTaHHBIM HA0Op JAHHBIX 3aTEM
pas3zaensieTcs Ha 00yJaroluii M TECTOBBII HAOOPHI, COXpaHss IIETOCTHOCTh JAHHBIX IS 0€CIPUCTPACTHOM OIIEHKH.
Snpom mozenu siisiercsi Hyperscale-Cascaded TransformerNet, mogens DL, koTopast UCIOJIB3yeT KacKalHbIE
ciou TpaHchopmaTopa IS MOJIENHUPOBAHHS CIIOKHBIX BPEMEHHBIX COOTHOIICHWH M HEITHMHEHHOTO MOBEICHUS
JIeTpajalvy, MPHUCYIIETO MPOU3BOIUTEIFHOCTH OaTapeu ¢ T€YeHHEM BpeMeHH. Bammmanus Monenu W OleHKa
MPOU3BOJUTENEHOCTH  TIPOBOJATCS € TIOMOIIBIO IIporpamMMmHOro obecmeuenus Python, a MeTpukm
MPOU3BOIUTENEHOCTH U3MEPSIOTCS B TEPMUHAX METPHK OIIMOOK, TaKMX Kak cpeHsst abconmoTHas ommoka (MAE)
0.062, cpemnexBaaparndeckas ommoOka (MSE) 0.0006, cpemnexBanmparnueckas ommubOka (RMSE) 0.0245 wu
k03(hdunuent nerepmunanuu  (R2-score) 0.9993. DkcrnepuMeHTanbHbIE pPE3YJbTAThl IIOKA3bIBAIOT, YTO
npeIaraemMas MOZIeNb Ha OCHOBE TpaHC(HOpPMaTOpa MPEBOCXOANUT TPAAUIIMOHHBIE METO/IbI MAIIMHHOTO 00yYEHUS
(ML) c TOukHM 3peHHS TOYHOCTH M HAJEKHOCTH B PEBOJIIOLMOHHBIX CHCTEMax YIpaBlIeHHs OaTapesmu
AIEKTPOMOOHIIEH.

Knrouesvie cnosa: IpOrHO3UPOBAHNE OCTATOYHOTO PeCypca aKKyMyJISTOPOB, aKKyMYJIATOPHI JIEKTPOMOOHIIEH,
runepmacimrabHas kackagnas apxurekrypa TransformerNet, EDA, nporpammuoe obecnieuenne Python.

I. INTRODUCTION lack of precise techniques for estimating its end of

Rapid developments in battery technology, life, battery packs the costliest component are
including high stability, low self-discharge rate, ~ frequently utilized inefficiently or replaced too
and lightweight design, coupled with growing  SOON- According to industry standards, a battery
worries about climate change, have led to the 1S said to be near the end of its life when its
widespread adoption of batteries in a variety of ~ capacity drops below its initial value [2].
applications, most notably EVs. Despite the However, as direct on-board measurements are

global growth in the hybrid and EV market, a not practical, this capa_bility accurately
critical factor for accelerating their adoption is ~ détermined by laboratory testing. Consequently,
improving operational efficiency [1]. Due to the ~ Battery Management Systems (BMS) in EVs
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often rely on simplistic estimations, such as
counting ampere-hour throughput or discharge
cycles, which fail to account for variations in

driving  behavior, usage intensity, and
environmental conditions like climate and terrain
[3].

EV users are increasingly concerned about
battery's health status and its RUL, as severely
degraded batteries pose safety risks, including
potential fire or explosion hazards. Consequently,
it is essential for BMS to monitor RUL and
manage battery lifespan effectively. Battery life
management plays a pivotal role in BMS
operation, directly influencing evaluation and
utilization of the vehicle’s Battery Energy Storage
System (BESS). To achieve this, it is necessary to
understand  performance variation among
individual cells within battery pack and determine
their current RUL [4, 5]. Nonetheless, battery
degradation arises from complex internal
electrochemical reactions, making the underlying
mechanisms difficult to explain. Among these,
electrochemical processes are a primary
contributor to performance decline. Additionally,
external parameters such as current and
temperature further exacerbate degradation [6].

A more precise and adaptable method for
predicting the RUL of batteries extend their
service life significantly by ensuring replacement
only when truly necessary [7]. It would also
enhance understanding of how different operating
conditions influence battery aging. Semi-
empirical or empirical models for capacity loss,
usually based on metrics like State of Charge
(SOC) and C-rate, are frequently used in current
BMS implementations.  Nevertheless, these
models lack stochastic components and are
typically deterministic [8]. By accounting for the
inherent unpredictability in aging data, a
stochastic model, proposed in this study offers a
more reliable estimate. Moreover, ML techniques
are increasingly being explored for battery
prognostics, showing promising accuracy in
predicting capacity loss from operational data [9,
10].

A. Related Works

Shaheer Ansari et al (2021) [11] have
proposed a Multi-Channel Profile (MCI) based
Artificial Neural Network framework for
predicting the RUL of EV lithium-ion batteries.
The MCI-based ANN captures different battery
degradation patterns. The model, however, has a
high generalization ability when a large amount of
data is used for training but its accuracy becomes
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lower with a small number of training datasets,
thus, its scalability is limited.

Luis Magadan et al (2023) [12] have
implemented Bi-directional Long Short Term
Memory (BiLSTM) based prediction of RUL of
bearings in electric motors. It combines BiLSTM
network for sequence learning and RUL
prediction. However, the dependency on dataset-
specific feature distributions pose a problem for
the method's flexibility when it is used on motors
with very non-stationary signals or for the
detection of new types of bearing faults, thus,
more extensions are needed for a bigger scale.

Kai Li et al (2020) [13] have introduced fuzzy
logic (FL) in making battery life predictions more
accurate for EVs with the use of charging cloud
data. FL makes the prediction process more robust
and accurate, thus the estimation errors are less
than 4% for the whole sampled EV datasets,
support the stabilization of battery life estimation
even if the cloud data are uncertain and noisy.
However, the requirement for predefined fuzzy
rules and membership functions restrict the
battery-to-battery adaptability when different
chemistries or highly variable operating
environments are considered.

Dexin Gao et al (2023) [14] have presented
one Dimensional Convolutional Neural Network
(CNN)-Bi-directional Long Short Term Memory
(1D-CNN-BILSTM) for forecasting RUL of
lithium-ion batteries in EVs. The CNN module
digs deep features from state-of-health (SOH)
data in a very effective manner, whereas the
BiLSTM unit gets the temporal dependencies in
both the past and the future thus it can learn the
sequence robustly. This hybrid model not only
features the best characteristics of both worlds but
requires high computational resources and
extensive training data, which limit its scalability
across diverse battery chemistries and operating
conditions.

Contributions of the proposed EV battery RUL
prediction system are given below:

o The data cleaning improves data credibility
by eliminating outliers, interpolating missing
values, and dampening noise to provide high-
quality input for model training.

EDA exposes latent patterns of degradation
and feature correlations with statistical
profiling,  distribution  mapping, and
correlation heatmaps.

Min-max scaling based feature engineering
scales input features to a bounded range [0, 1]
to enhance learning stability and ensure
consistent model convergence.
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The hyperscale-cascaded TransformerNet
models sophisticated temporal relationships and
non-linear degradation patterns with a deep,
multi-block transformer framework that includes
hierarchical attention.

This paper has following structure: Proposed
framework's design and component parts are
described in Section 2. Development and
validation of RUL estimation model and capacity

loss model are covered in Section 3. Results of
entire proposed framework are shown in Section
4, and the paper is concluded with a summary of
results and key takeaways in Section 5.

Il. PROPOSED SYSTEM DESCRIPTION

The proposed block diagram of Hyperscale
cascaded TransformerNet based framework for
RUL prediction in EV batteries is shown in Fig.
1.

DATA PREPROSESSING
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Fig. 1. Proposed RUL prediction system for EV batteries.
The EV battery multi variate time-series data ~ Hyperscale-cascaded TransformerNet

such as cycle index, voltage, current and time-
stamped operating metrics are collected. These
raw data attained from on-board sensors or BMS,
then preprocessed comprising of fundamental
data cleansing steps like outlier deletion, missing
value interpolation, and noise suppression by
means of smoothing filters. The preprocessing
approach ensures data reliability and integrity,
which are instrumental for learning downstream.
After preprocessing, the data is visualized using
EDA, where statistical profiling, distribution
mapping, and correlation heatmaps are created,
reveals hidden patterns and associations between
features. The visualized features, are normalized
into specific range by min-max normalization.
Then, data is split into training and testing sets,
preserving chronological integrity for ensuring
unbiased performance evaluation. Training set is
employed to tune model parameters, and testing
set is used to test generalization ability.
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architecture, a DL architecture with repeated
transformer blocks structured in a cascaded
hierarchy. Every transformer block consists of
multi-head self-attention mechanisms, feed-
forward layers, and positional encoding schemes
that allow the model to learn long-range temporal
dependencies and nonlinear degradation paths in
battery dynamics.

I11. PROPOSED SYSTEM MODELLING

A. Data Acquisition

The data acquisition phase kicks off the
predictive pipeline by retrieving various
operational parameters from EV battery systems.
Some of the time-series data include cycle index,
voltage, current, and other time-dependent
features, which are recorded through embedded
sensors in the battery management infrastructure.
The acquisition layer is a specialized subsystem
tasked with logging and forwarding these signals
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to a centralized repository for data. It doesn't
include the storage server itself, which belongs to
downstream data analysis module.

New generation EV controllers are able to
stream internal  diagnostic  signals e.g.,
charge/discharge rates, temperature profiles, and
impedance metrics via socket-based
communication protocols. The design enables
data transmission in real-time or event-driven,
depending on whether an external monitoring
agent opens the connection. In this system, the
data server controls the data acquisition process
by deciding when to start or end data gathering
and which battery modules or vehicle units to
capture.  This  scalable and  flexible
communication configuration provides high-
fidelity battery health data for ongoing
preprocessing and predictive modelling.

B. Data Preprocessing
Data Cleaning

Smart meter datasets may have missing
entries, noise, and anomalous readings owing to
sensor faults or transmission errors. All missing
values and detected outliers are replaced with the
average energy use measured at the same hour on
the previous day and the last good timestamp,
maintaining temporal continuity and minimizing
bias.

Exploratory Data Analysis
(a) Descriptive Statistics

Aggregate statistics like mean, median,
standard deviation, and range are calculated to
gain insight into central tendencies and variability
in consumption patterns.

(b) Distribution Analysis

Histograms and density plots for visualizing
spread and skewness of energy consumption over
time assist in detecting non-Gaussian behavior or
seasonal patterns.

(c) Correlation Heat maps

Pairwise correlation matrices are plotted to
investigate the relationships between variables
like hourly consumption, temperature, and day-
of-week indicators. This supports feature
selection and dimensionality reduction.

C. Feature Engineering (Min-Max Scaling)

To mitigate for the effects of scale differences
in input data and improve prediction model
performance, normalization is employed to map
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raw features into a bounded range. This provides
stable scaling and maintains the learning process

steady.
Take an input sequence of energy
consumption:

x={x1,x2,...,xn} @

Where, (n) is the length of the sequence, each
component (x;) is normalized with the min-max

scaling function:
. X —X .
Xi — 1 min (2)
Xinax ~ Xinin
In the same fashion, for the output variables(yi') \
the transformation is:

(yi' ) _ Yi = Yiin (3)
Ymax ~ Ymin
Xoin s X Yin» Yo @F€  the  minimum  and

maximum limits of the respective variables. The
normalized inputs (x; ) and outputs (y;) obtained

range between [0, 1] so that they become
compatible with activation functions and also
facilitate better convergence during training.

D. Train and Test Split

The datasets are divided into two segments for
model prediction analysis: 70% is designated for
training the model, while the remaining 30% is
reserved for testing its performance. The final
model configuration is selected based on its
accuracy achieved during the training phase.

E. Hyperscale Cascaded Transformer Net
Embedding Layer

In the novel Hyperscale-Cascaded
TransformerNet approach to predict RUL of
battery, the embedding layer is the first
transformation phase that converts raw input
sequences into a deep temporal modelling—
friendly format. The input data is extracted using
a sliding window strategy and organized as a
batch of sequences of shape, X e R***F where B
is batch size, L is window length, and F is the
number of battery health indicators.

The input is projected into a higher-
dimensional representation R*“®, enabling the
transformer encoder to capture subtle degradation
patterns. Each input feature is converted to an
embedding vector using a linear transformation:

E = XW,

e

(4)
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Where, W, e R™®is a learnable embedding

weight matrix. This operation maps each battery
feature into a dense vector space that is more
suitable for temporal learning.

Positional Encoding

Positional encoding introduces temporal order
information into the input embeddings, allowing
the model to differentiate between identical
values occurring at different cycle indices. A
sinusoidal positional encoding scheme s
employed, defined as:

] ®

] ®

Where pos denotes the time-step index, i is the
embedding dimension index, and D is the
embedding dimension. The positional encoding
vectors are element-wise added to the input
embeddings, ensuring the transformer retains
temporal degradation ordering.

pos

PE ( pos, 2i) =sin| ———
(p ) (100002|/D

pos

PE( pos,2i+1)=sin| ———
(p ) (100002I/D

Transformer Block

The transformer encoder employs Multi-Head
Self-Attention (MHSA) as given in fig.2, to
capture long-range dependencies in battery
degradation sequences.

Each embedded input is linearly projected into
Query (Q), Key (K), and Value (V) matrices:

(7)

Q = ZWQ, K =ZWK, V= ZWV
Where, Z € RE*P is reshaped input tensor and
Wo, Wx, Wy, are learnable parameters.
From fig.3, the Q, K, and V matrices are split

into h attention heads:
Q. K,V - {Qh’ Kh’Vh}::l (8)
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matrix.
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Fig. 4. Splitting of the Q, K, and V matrices.

Fig. 4, each head computes scaled dot-product
attention:

QKy

Ja.

Where, d, is the key dimensionality used to
stabilize gradient propagation.

Attention(Q,, K.V, ) = Softmax( Jvh 9
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Fig. 5. Division of the attention head matrix.

The outputs of all heads are concatenated and
linearly projected as displayed in fig.5:

MHSA(Z ) = Concat (head, ..., head,, )W, (10)

This process enables model to focus on several
degradation patterns at once, enhancing its
capacity to generalize across a wide range of
battery health traces.

Multi-Layer Perceptron (MLP)

Following MHSA, a two-layer MLP refines
the  learned  features using  nonlinear
transformations:

MLP(X)=0o(XW, +b )W, +b, (11)

Where, W,,W,are weight matrices, b,b,are
bias vectors, and o(-)denotes a nonlinear

activation function.

This layer boosts the ability of the model to
learn sophisticated degradation dynamics and
nonlinear interactions between battery features.

Layer Normalization and Residual Connections

Layer Normalization (LN) is applied prior to
both MHSA and MLP blocks, and residual
connections are incorporated to preserve gradient
flow:

Y =X +Block (LN (X)) (12)

This design improves convergence stability
and ensures sensitivity to battery health
variations.
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Feedforward Network Layer:

The  feedforward  network  increases
representational capacity while maintaining
computational efficiency by using an expansion
factor of two:

FFN (X ) = Dropout (W,ReLU (W, X +b, )b,) (13)

Here, (X)is the input feature matrix, and
(W,,w,) represent weight matrices for the first

and second linear layers, respectively. The bias
vectors (b)) and (b,) are added to provide

translation in the feature space. The first
transformation W, e R*“~= increases the input

dimension (d,, )to an intermediate dimension
dff =2xd,., . Where the first linear layer

expands the feature dimension and the second
compresses it back to the original hidden size.

The Fig. 6 depicts the proposed hyper scale-
Cascaded TransformerNet in predicting battery
RUL.

Cascaded Transformer Block

The cascaded transformer block enhances
RUL prediction by computing queries in the
frequency domain while preserving keys and
values in the temporal-spatial domain, enabling
simultaneous modelling of long-term degradation
trends and localized temporal dynamics. Consider
the normalized battery health indicator is
expressed as,

X e]RLXC (14)

Where, L represents temporal window length
and C denotes number of feature channels.
Stage 1 Temporal-Spatial Attention
Construction

In the first stage, the input tensor is projected
into query, key, and value representations using
point-wise and depth-wise convolutions:

Q =0, {l//l(x)}’ K, =, {l//l(X)},Vl =, {l//l(x)}’
(15)

Where, 1x1
convolutions for channel mixing and ®@,(:)

represents depth-wise convolution with kernel size
3 for local temporal feature extraction.
The attention mechanism proceeds as follows:

v, (+) denotes point-wise

X' =y, (Attention(Q,,K,,V,))  (16)
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Stage 2: Frequency-Domain Feature Processor
(FDFP)

In the second stage, only the query tensor is
transformed into the frequency domain to capture
global degradation characteristics, while keys and
values remain in the temporal domain:

Il REGIONALE 1(69)2026

Q=F'(Mor(Q) @7

EMBEDDING
LAYER
POSITIONAL
ENCODING

ATTENTION

NORMALIZATION
LAYER
FEEDFORWARD
NETWORK
LAYER

CASCADED
TRANSFORNMIER]

NORM

TRANSFORMER BLOCK

FOURTER

] CHANNET,

| COMPRESSION BY |
_ TALD VIA 1x1
ey CONVOLUTION |

SPATIO-SPECTRO FUSION BLOCK

AXOD XL

REAL FF12d 11, CONV

11, CONV

PRELU( )
1x1, DCONY

GELU()
REAL FFT2d

ANODI2L

ATTENTION BLOCK

GLOBALAVERAGE

POOLING
ADAPTIVE KERNEL

CONVOLUTION

@ SIGMOID ACTIVATION

)

Fig. 6. Hyper scale-Cascaded TransformerNet.

Where, 7(-) and F“™(:) denote the 1D Fast
Fourier Transform (FFT) and inverse FFT,
respectively, and M is a frequency mask
emphasizing degradation-relevant bands.

Formal Definition of Frequency-Domain
Operators:

The 1D Discrete Fourier Transform (DFT) of
a temporal signal x[n] of length L is defined as:

L-1
X[f]=>x[n]e =™, f=0,..,L-1(18)
n=0

The Fast Fourier Transform (FFT), denoted by
F(-), is an efficient computational realization of
the DFT.

The inverse DFT (IDFT), implemented via
inverse FFT F7(-), reconstructs the time-domain
signal:

1 L-1

)= 3X11)

e—jz;rfn/L (19)
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Frequency Masking and Degradation Bands

The operator M denotes a frequency-domain
mask that selectively emphasizes degradation-
relevant spectral components:

M(f)z{

Here, 7, typically corresponds to:

Low-frequency bands: long-term aging and
capacity fade

Mid-frequency bands: cyclic operational stress

High-frequency bands: noise and transient
disturbances

This selective filtering ensures that the
frequency-enhanced queries retain meaningful
degradation information while suppressing
irrelevant noise.

The frequency-enhanced queries are then used
in attention computation:

X" = aAttention(Q,, K,,V, )+ X" (21)

1 f e]—"deg
0, otherwise

(20)
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Here,a is a learnable scaling parameter that
adjusts attention strength.

Spatio-Spectro Fusion-Based Attention for
Temporal Feature Enhancement

To avoid propagating redundant temporal
information, the Spatio-Spectro Fusion-Based
Attention Block (SSFB) integrates spatial and
spectral cues. The encoder feature E is processed
as:

Y =Conv,, ([SSFB(E),D]) (22)

SSFB operates through parallel spatial and
frequency pathways:

SSFB( X ) = Concat (Spatial (X ), Spectral (X)) (23)

Adaptive  kernel

smoothing:

sizing  prevents

)

over-

k

_199:(€) 1 (20
2

Hybrid Fourier-Spatial Upsampling for RUL
Feature Reconstruction

A hybrid upsampling strategy is used to
reconstruct high-resolution degradation features:

Fourier-Domain Upsampling:

Zero-padding is performed on the frequency
coefficients:

Xup(f):{

then the inverse FFT is performed, allowing
the recovery of smooth long-term degradation
trends.

X(f),f<f,

25
0, otherwise (25)

Pixel-Shuffle Spatial Upsampling:

The channel information is rearranged into a
higher temporal resolution, thus the local
transitions and cycle-level variations are better.

The hybrid method here is able to keep global
aging patterns as well as the fine-grained temporal
details, thus the accuracy and robustness of
battery RUL prediction have been enhanced.

IV. RESULT AND DISCUSSION

This section outlines the main results through
graphical results plotted in the form of Python-
generated plots that give easy insight into the
working of the system. Additionally, comparative
analysis across datasets as well as classifier
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systems is given, emphasizing the improved

efficiency of proposed method with respect to

state-of-the-art methods currently popular.

Table 1 Dataset Description.
Dataset Details

Battery Remaining Useful

Dataset name

Life (RUL)
Train Ratio 80%
Test Ratio 20%
No. of. Columns | 15064
No.of. Rows |9
Publicly available Kaggle
Data Source dataset for battery
remaining life prediction
The  underlying data
represent  measurements
Number of from 14 individual lithium-
Batteries ion batteries (NMC-LCO
18650 cells) that are cycled
until failure.
Each battery is subjected to
repeat  charge—discharge
cycles (typically on the
Number of order of hundreds to over a
Cycles thousand  cycles) until
degradation to end-of-life,
allowing RUL to be

computed for each cycle.

Table.1 displays the proposed research utilizes
Battery Remaining Useful Life (RUL) dataset,
and data has been divided into training and testing
sets with 80% and 20% ratio, fig.7 for ensuing
model evaluation is robust. It contains
measurement in the form of 9 rows and 15, 064
columns, representing data collected from 14
lithium ion batteries are cycled to repeat
charge/dis-charge cycles until the batteries are
completely degraded. This datasets serves as a
solid foundation to model battery degradation and
development of proposed predictive model for
estimating battery lifespan in energy storage
applications.

Train-Test Data Split Ratio

Training Set
Testing Set

20.0%

80.0%

Fig.7. Train-Test data splitting.
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Table 2 Feature Set and Target Variable for
Battery RUL Modelling.

Cycle Features
Index
F1 Discharge Time (s)
F2 Time at 4.15V (s)
F3 Time Constant Current (s)
F4 Decrement 3.6-3.4 V (s)
F5 Maximum Discharge Voltage (V)
F6 Minimum Charge Voltage (V)
F7 Charging Time (s)
Target | The Remaining Useful Life (RUL)
Variable
(RUL)

In table.2, dataset contains a set of features
describing voltage and current behavior of
lithium, ion batteries during their
charge/discharge cycles. These are standard
inputs in RUL modeling tasks.

Cycle Index is the sequential cycle number,
and features like Discharge Time (F1), Time at
4.15 V (F2), and Time Constant Current (F3)
represent the time intervals of the discharge and
charging phases.

Decrement 3.63.4 V (F4) is the time for the
voltage drop to occur within the critical range, and
Maximum Discharge Voltage (F5) together with
Minimum Charge Voltage (F6) give the voltage
limits that show the battery's health.

Charging Time (F7) and Total Time are also
measures of the energy transfer processes'
duration.

These features, describe the electrochemical
performance and decay of the batteries. The target
variable is RUL, number of cycles through which
the battery able to function until the end of life.

Top 10 Longest Charging Times (Ranked 1 to 10)

-1108.0
-1114.0
-1105.0

T R

-1108.0

5-7.0
-1103.0
-1108.0

Rank - Cycle Index

-1108.0

© o N o

-1134.0
-1113.0

EEm Charging Time

T U T
400000 600000 800000

Charging Time (s)

T
200000

Fig. 8. Top longest charging times.
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Fig. 8 presents the top 10 longest charging
times across battery cycles in EV RUL dataset,
indicating the top 10 battery cycles with the
highest charging times in seconds. Each bar is
assigned to a particular cycle index, and the x-axis
is used for charging time and the y-axis for rank
order from 1 to 10.\

The visualization shows extreme variation in
charging patterns between cycles, with many
instances especially cycle indices 1108, 1114,
1105, and 1108 having prolonged charging times.

Top 10 Shortest Discharge Times (Cycle Index 1 to 10)

30 | MM Discharge Time
254

204

o

15 4

Discharge Time (s)

Cycle Index
Fig. 9. Top shortest discharge times.

Fig. 9 represents the top 10 shortest discharge
times through EV battery cycles, exhibiting the
shortest discharge time’s cluster around cycle
indices 200, 400, and 500, where the minimum is
seen nearest cycle index 200.

The shortened discharge times indicate lower
energy retention, capacity degradation, or sudden
voltage drops, all precursors to prompt aging.

Charging Time Ratio over Cycles

175

150

Charging Ratio
It 5 5
& % 8 0

N
v}

600
Cycle Index

o

o 200 400 800 1000

Fig. 10. Charging time ratio over cycles.

Fig. 10 displays the charging time ratio over
cycles, it visually summarizes the temporal trend
and anomalies in the charging pattern of a battery
throughout its lifetime. The ratio of charging
times is a sensitive measure of battery health, with
well-behaved low values indicating normal use
and spike-like occurrences like those at cycle
indices 300 to 700 indicating possible degradation
events, rising internal resistance, or heat stress.
Detection of such outliers is very important for
early fault detection and precise estimation of
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RUL.

Discharge Time Distribution

[ Discharge Time
20000

15000 A

Count

10000 A

5000 A

1.0
1e6

0.4 0.6 0.8

Discharge Time (s)

0.0 0.2

Fig. 11. Discharge time distribution.

Fig. 11 visualizes the temporal nature of
battery discharge behavior over periods of
operation. The histogram indicates that most
discharge events take place in shorter time
periods, with a dense concentration toward the
initial discharge time. In the TransformerNet
approach uses this discharge time data to learn
latent representations of battery life, employing
its multi-head attention mechanism to attend to
both common short-duration events and the less
common long-duration outliers. These temporal
features are combined in the cascaded architecture
to increase the robustness and granularity of RUL
prediction.

Min. Voltage Charged vs RUL

4.0

®

Min Voltage Charged (V)
S

324
—— Min. Voltage Charged

o 200 400 600

RUL

800 1000

Fig. 12. Minimum voltage charged Vs RUL.

Fig. 12 illustrates the correlation between the
minimum voltage charged and the remaining
useful life of the battery, which exhibits an
evident downward trend as RUL reduces. This
reduction in minimum voltage is an indicator of
progressive battery degradation, where lower
voltage cut-offs indicate reduced capacity and
rising  internal  resistance.  The  novel
TransformerNet framework, establishes the
predictive significance of voltage-based features,
which are intrinsically electrochemically and
thermally stress-sensitive and illustrates the
capacity of the model to learn long-range
dependencies and non-linear  degradations
through its cascaded attention mechanism.
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Distribution of RUL Values

S|

1

1/

7
A

~

Frequency

600 800

RUL

200 400 1000

Fig. 13. Distribution of RUL values.

Fig.13 demonstrates the histogram overlaid
with a line plot, showing the frequency
distribution of RUL values in the dataset. The x-
axis reflects the RUL in cycles, whereas the y-axis
reflects the frequency of occurrence. The
distribution is seemingly even, with a dip towards
the 700-cycle point, potentially indicating a
region of data sparsity or a phase shift in battery
decline. Through both dense and sparse areas of
the RUL spectrum, the model is able to better
predict failure onset and learn to adjust its
attention to key time periods.

Density Plot of RUL

—— RUL

0.0008

0.0006 -

Density

0.0004

0.0002

0.0000

500 1000 1500

RUL

=500

Fig. 14. Density plot of RUL.

Fig.14 reveals the probability density of RUL
values throughout the dataset, providing a
smooth, continuous flow of how often various
RUL values are observed. The curve has a fairly
flat top between 0 and 1000 cycles with minor
dips at 250 and 750, and steep drop-offs at the
extremes, which exhibits that most of the battery
samples are in a middle operational lifespan
range. The hyperscale-cascaded architecture is
intended to deal with sophisticated, non-uniform
distributions such as this one by dynamically
modulating its attention on multiple temporal
scales.
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RUL Distribution in Train and Test Sets (Scaled)

I Train
Em Test

Frequency

0.0 0.2 0.4

0.6
RUL (scaled)

0.8 1.0

Fig. 16. RUL distribution in train and test sets.

Fig. 16 shows that the scaled distribution of
RUL values over the training and test sets,
providing information regarding the statistical
balance and representational coverage of training
and test data employed to train and test model.
The hyperscale-cascaded structure, with its multi-
head attention and hierarchical temporal
modelling, is precisely tailored to learn from such
rich input patterns.

Final Test Metrics

" _0. ’

0.0093

p89

RMSE

H0.0062

-0.0001

T T T
0.6 0.8 L0

score

T T
0.0 0.2 0.4

Fig. 17. Final test metrics.

Fig. 17 presents four important measure
metrics R?, RMSE, MAE, and MSE which
together evaluate the predictive strength and
dependability of the model. The extremely high
R? value 0f 0.9989 reveals that the model accounts
for almost all the variance present in the RUL
data, reflecting an excellent fit. In contrast, the
very low error measures (RMSE: 0.0093, MAE:
0.0062, MSE: 0.0001) prove that the proposed
hyperscale-cascaded TransformerNet model's
predictions are accurate and regular, with
negligible deviation from true values.

Fig. 18 represents the comparative line
between actual RUL values (solid blue line) and
predicted RUL values (dashed orange line) over a
series of sample indices. The minimum variation
in actual and predicted values throughout the
sample range shows that the model generalizes
and is robust even under situations of operating
variability.

Fig.19 displays the ablation experiments
comparing three transformers, based models:

Cascaded Transformer, HyperScale Transformer
and HyperScale Cascaded Transformer.

Actual vs Predicted RUL

1000 -

—— Actual
== Predicted

RUL Value

75 100 125 150 175 200
Sample Index

o 25 50

120

Fig. 18. Actual and Predicted values.

Each model is assessed by four performance
metrics, including the R Score, MSE, MAE, and
RMSE. From table.3, results indicate that the
HyperScale Cascaded Transformer boasts the
highest predictive accuracy with an R Score of
0.9993 with the lowest error values in all metrics
(MSE: 0.0006, MAE: 0.0211, RMSE: 0.0245)
results in better model convergence as well as
lower prediction error in the forecasting task.

The evaluation of regression results between
the HyperScale Cascaded Transformer and other
current architectures (DNN and DenseNet) as
presented in Fig 20 and Table 4 shows that the
HyperScale Cascaded Transformer model
provides an increased level of accuracy with a
corresponding R? score and overall lower error
based on all of the error metrics MSE of 0.0006,
MAE of 0.0211, and RMSE of 0.0245 which
points to the increased accuracy and stability of
the predictive model.

Table.5 illustrates comparative analysis of
different RUL prediction models in terms of their
RMSE values. Out of the enumerated models,
conventional methods like Artificial Neural
Network-Random Forest-K-Nearest Neighbours-
Gradient Boosting Decision Tree ANN-RF-
KNN-GBDT [15], LSTM-Support Vector
Machine (SVM) [16], Extreme Gradient
Boosting-Light Gradient Boosting Machine,
XGBoost-LightGBM [20] and1D-CNN-BiLSTM
[14] provides RMSE values of 11.007 to 0.8306,
respectively, indicating low accuracy in achieving
nonlinear degradation patterns. The proposed
hyper  scale-cascaded transformer net
demonstrates a much lower RMSE of 0.0245,
surpassing all other models. This huge reduction

indicates model's capacity to catch both short-
term fluctuations and long-term degradation
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patterns via its multi-block transformer hierarchy
and frequency-aware attention modules.

Fig. 21 visualizes the comparison of prediction
error among prediction models employing MAE
as the metric of evaluation. The developed model
presents the lowest MAE of 0.0211, reflecting

better accuracy in predicting battery RUL,
reflecting the stability and accuracy of the
developed architecture, which renders it highly
appropriate  for real-time battery health
monitoring and predictive maintenance in electric
vehicle use.

MODEL TRAINING HISTORY-HYPER SCALE HyperScale Cascaded Transformer Metrics
CASCADED TRANSFORMER 101 rpoges
Training vs Validation Loss Training vs Validation MAE
0.0175 —— Training Loss o8 —— Training MAE 0.8
0.0150 4 —— Validation Loss 0.07 4 —— Validation MAE
0.0125 0.06 e 0.6
E 0.0100 w203 §
= < 0.4
@ 0.0075 2 0.04
S
0.0050 - 0.03 1 0.2
0.0025 + 0.02
0.0006 0.0211  0.0245
0.0000 0.01 0.0 T T — 1
I & ¢ 3 I 4 v 1+ = R: Score MSE MAE RMSE
Epochs Epochs Metrics
MODEL TRAINING HISTORY-HYPER SCALE HyperScale Transformer Metrics
HYPERSCALE TRANSFORMER 1.0 OIoEEG
Training vs Validation Loss Training vs Validation MAE
0.085 — 0.14 == 0.8
= Training Loss = Training MAE
0.040 | \ == Validation Loss [\ == Validation MAE
0.035 v 0.6
— 3
o 0.030 T
o >
§ 0.025 0.4
E 0.020
0.015 0.2
0.010 0o 0.0020 0.0350 0.0447
" Rescore  MsE MAE RMSE
Epochs Epochs Metrics
MODEL TRAINING HISTORY- HYPER SCALE Cascaded Transformer Metrics
CASCADED TRANSFORMER 0.9500
Training vs Validation Loss Training vs Validation MAE
—— Training Loss o018 —— Training MAE 0.8
0.06 'validation Loss 0.16 Validation MAE
0.6
0.14 L]
- 0.05 E
" (]
E \ 0.12 >
E’ 0.04 \ ] 010 04
0.03 0.08 0.2
\ 0.06 \ 0.0800 0.0894
: N o0s 00 . o.ogso ‘ ‘
2 a 6 8 10 2 a 6 8 10 R? Score MSE MAE RMSE
Epochs Epochs Metrics
Fig.19. Ablation Studies.
Table.3 Ablation Study of Transformer-Based Architectures
Ablation Study
Model R2-score MSE MAE RMSE
Cascaded Transformer 0.95 0.008 0.08 0.0894
HyperScale Transformer 0.988 0.002 0.035 0.0447
HyperScale Cascaded Transformer 0.9993 0.0006 0.0211 0.0245
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DNN Metrics

DenseNet Metrics

R? Score Comparison of Regression Models
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Fig.20. Comparison with existing model.
Table.4. Comparison of Regression Metrics with existing models.
Comparative analysis

Model R2-score MSE MAE RMSE
DNN 0.94 0.0018 0.0387 0.0424
DenseNet 0.96 0.0013 0.0321 0.0361
HyperScale Cascaded Transformer 0.9993 0.0006 0.0211 0.0245

Table 5 Comparison of RMSE

Prediction Model RMSE
ANN-RF-KNN-GBDT [15] 11.007
LSTM-SVM [16] 6.9422
XGBoost-LightGBM [20] 0.94
1D-CNN-BILSTM [14] 0.8306
Proposed 0.0245

Fig. 22 demonstrates a comparative study of
MSE values for three predictive models LSTM-
SVM) [16], RF [20], and the proposed technique,
emphasizing the better accuracy of the recently
proposed framework. The RF [20] model has the
greater MSE at 1.67, showing high variance
between estimated and actual values. The MLP
[19] model with an MSE of 48.1941, presenting
improved learning capability but still poor
precision.

COMPARISON OF R2-SCORE

4 ANN-RF-KNN-GBDT [15] +1D-CNN-BILSTM [14] 4LSTM-SVM [16] «KNN[17] «Proposed

Proposed | 99.93%

KNN [17] (| 99.64%

LSTM-SVM [16] | 97.56%

1D-CNN-BILSTM [14] 95.76%

ANN-RF-KNN-GBDT [15] I 929%

96% 98% 100% 102%

Fig. 23. Comparison of R2-Score.

122

COMPARISON OF MAE
0.0211
Proposed
1D-CNN-BiLSTM [14] |o.593

XGBoost-LightGBM [20] |0.64

LSTM-SVM [16] [l 4.8735

6.54
KNN [17]
22.81

74.52]

10 20 30 40 50 60 70 80

C-LSTM[18]

ANN-RF-KNN-GBDT [15]

o

Fig. 21. Comparison of MAE.

COMPARISON OF MSE
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Fig. 22. Comparative analysis of MSE.

Conversely, the proposed model has a very
low MSE of 0.0006, which indicates confidence
and forecasting accuracy of the proposed
architecture, confirming its suitability for high-
resolution battery RUL estimation and smart
energy system prediction.

Fig. 23 compares the predictive ability of R2-
score for different algorithms in predicting battery
RUL. Out of the models compared proposed
approach reflects better precision, with an R2-
score of 99.93%, highlighting the superiority of



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

hyperscale-cascaded TransformerNet architecture
in learning intricate temporal relations and
degradation modes in EV battery data and
yielding highly accurate and interpretable RUL
predictions critical for predictive maintenance
and energy optimisation.

V. CONCLUSION

This research presents a battery lifespan
prediction system on the basis of a hyperscale-
cascaded TransformerNet model that accurately
captures the nonlinear dynamics of battery aging.
The new model has very accurate predictions for
differing battery capacity conditions and is
extremely applicable for implementation in actual
scenarios like data centres and grid-scale battery
energy storage systems, where batteries are main
energy storage or backup units. Model validation
and performance testing were performed using
Python, and the framework yielded a MAE of
0.0211, MSE of 0.0006, RMSE of 0.0245, and an
R2-score of 0.9993. These performances identify
the model's computational efficacy and
adaptability for real-time battery health
monitoring. In comparison to conventional ML
methods, the Transformer-based method provides
better accuracy and resilience, marking a
milestone in EV battery management systems. To
further improve predictive dependability, the next
phase of research will investigate a wider variety
of optimization techniques for predicting
remaining battery capacity, incorporate more
sophisticated feature selection algorithms, and
examine domain-adaptive learning mechanisms
to support various operating profiles and
environmental scenarios.
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