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Abstract. The main objective of this study is to enhance the intelligence level of power grid fault 

diagnosis systems to address increasingly complex fault scenarios and ensure the overall security, 

stability, and resilience of modern power grids. Traditional diagnostic methods often fall short in 

handling high-dimensional, nonlinear, and dynamic data generated in smart grid environments. To 

overcome these limitations, this research proposes a data-driven framework based on Deep Learning 

(DL), introducing a novel hybrid architecture called the Chaotic Attentive Recurrent Transformer 

Network (CARTNet). The proposed method begins with comprehensive data acquisition from various 

sources, including fault logs, real-time system parameters, weather data, and renewable energy outputs. 

The data undergoes preprocessing steps such as integration, cleaning, and advanced exploratory analysis 

to improve quality and extract latent features. CARTNet is specifically designed to model nonlinear 

dynamics and temporal dependencies in time-series data by synergistically combining chaotic system 

modeling with attention-based recurrent transformer mechanisms, allowing for more accurate and robust 

fault identification. The most important results are demonstrated through extensive simulations using 

Python, where CARTNet achieves a fault diagnosis accuracy of 99.88%, significantly outperforming 

conventional deep learning models. Its ability to learn complex patterns and adapt to diverse data inputs 

ensures reliable and timely fault detection. The significance of the obtained results is that CARTNet 

provides a powerful and scalable solution for intelligent fault diagnosis in smart grids, laying a strong 

technological foundation for the future of automated and resilient power system operations.
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Rețea haotică atentă de transformatoare recurente pentru diagnosticarea inteligentă a defecțiunilor rețelei 

electrice
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Rezumat. Obiectivul principal al acestui studiu este de a îmbunătăți nivelul de inteligență al sistemelor de 

diagnosticare a defecțiunilor rețelelor electrice pentru a aborda scenarii de defecțiuni din ce în ce mai complexe și 

pentru a asigura securitatea, stabilitatea și reziliența generală a rețelelor electrice moderne. Metodele tradiționale 

de diagnosticare sunt adesea insuficiente în gestionarea datelor de înaltă dimensiune, neliniare și dinamice generate 

în mediile de rețele inteligente. Pentru a depăși aceste limitări, această cercetare propune un cadru bazat pe date, 

bazat pe Deep Learning (DL), introducând o nouă arhitectură hibridă numită Chaotic Attentive Recurrent 

Transformer Network (CARTNet). Metoda propusă începe cu achiziția completă de date din diverse surse, inclusiv 

jurnale de defecțiuni, parametri de sistem în timp real, date meteorologice și ieșiri de energie regenerabilă. Datele 

trec prin etape de preprocesare, cum ar fi integrarea, curățarea și analiza exploratorie avansată, pentru a îmbunătăți 

calitatea și a extrage caracteristici latente. CARTNet este special conceput pentru a modela dinamica neliniară și 

dependențele temporale în datele din seriile de timp, combinând sinergic modelarea sistemului haotic cu 

mecanismele de transformare recurentă bazate pe atenție, permițând o identificare a defecțiunilor mai precisă și 

robustă. Cele mai importante rezultate sunt demonstrate prin simulări extinse folosind Python, unde CARTNet 

atinge o precizie de diagnosticare a defecțiunilor de 99,88%, depășind semnificativ modelele convenționale de 

deep learning. Capacitatea sa de a învăța modele complexe și de a se adapta la diverse intrări de date asigură o 

detectare fiabilă și la timp a defecțiunilor. Semnificația rezultatelor obținute constă în faptul că CARTNet oferă o 

soluție puternică și scalabilă pentru diagnosticarea inteligentă a defecțiunilor în rețelele inteligente, punând o bază 

tehnologică solidă pentru viitorul funcționării automate și reziliente a sistemelor energetice.

© Kishore R. D., Kiran A. T., Abhinav A., 

Kumar S., Koushik S. CH., 2025
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Хаотическая, основанная на внимании, рекуррентная трансформерная сеть для интеллектуальной 

диагностики неисправностей электросети
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Аннотация. Основная цель данного исследования — повысить уровень интеллекта систем диагностики 

неисправностей электросетей для решения всё более сложных сценариев неисправностей и обеспечения 

общей безопасности, стабильности и отказоустойчивости современных электросетей. Традиционные 

методы диагностики часто не справляются с обработкой многомерных, нелинейных и динамических 

данных, генерируемых в интеллектуальных сетях. Для преодоления этих ограничений в данном 

исследовании предлагается управляемая данными инфраструктура, основанная на глубоком обучении 

(ГО), представляющая собой новую гибридную архитектуру, называемую хаотической внимательной 

рекуррентной трансформаторной сетью (CARTNet). Предлагаемый метод начинается со сбора 

комплексных данных из различных источников, включая журналы неисправностей, системные параметры 

в реальном времени, метеорологические данные и данные о выработке возобновляемой энергии. Данные 

проходят этапы предварительной обработки, такие как интеграция, очистка и расширенный 

исследовательский анализ, для повышения качества и выявления скрытых признаков. CARTNet 

специально разработан для моделирования нелинейной динамики и временных зависимостей во 

временных рядах данных путём синергетического сочетания моделирования хаотических систем с 

рекуррентными трансформаторными механизмами, основанными на внимании, что обеспечивает более 

точную и надёжную идентификацию неисправностей. Наиболее важные результаты продемонстрированы 

с помощью обширного моделирования на Python, где CARTNet достигает точности диагностики 

неисправностей 99.88%, значительно превосходя традиционные модели глубокого обучения. Способность 

CARTNet изучать сложные закономерности и адаптироваться к разнообразным входным данным 

обеспечивает надежное и своевременное обнаружение неисправностей. Значимость полученных 

результатов заключается в том, что CARTNet представляет собой мощное и масштабируемое решение для 

интеллектуальной диагностики неисправностей в интеллектуальных сетях, закладывая прочную 

технологическую основу для будущего автоматизированной и устойчивой работы энергосистем.

Ключевые слова: сбор данных, предварительная обработка, исследовательский анализ.

I.  INTRODUCTION 

The harmless and stable operation of the 

power system is ensured by prompt and precise 

power grid fault diagnostics, which also helps to 

system recovery procedures [1, 2]. Model-based 

and data-driven approaches are commonly used in 

fault diagnosis techniques [3]. Validated system 

models that accurately depict the failure effects in 

both healthy and flawed scenarios are necessary 

for model-based approaches [4-6]. The power 

grid dispatching centre receives a large amount of 

alarm data as soon as a defect occurs due to the 

growth of the smart grid and the expanding use of 

intelligent electronic devices in the power grid 

[7]. It is an extremely challenging for dispatchers 

to identify malfunctioning devices based on 

operational knowledge due to the intricate logical 

linkages among alarm information. Finding the 

fault elements is the primary goal of power system 

diagnosis when a malfunction occurs [8, 9]. DL is 

used in several power system domains, including 

fault diagnostics, because of its potent learning 

capabilities [10].

The conventional approaches Regression 

analysis [16], Support Vector Machine (SVM) 

[17], CNN [18] and Long Short Term Memory 

(LSTM) [19] are exploited in fault diagnosis on 

the grid. However, that approaches are trouble 

with multi-class classification issues, decreased 

susceptibility and inferior classification accuracy.  

The temporal recurrent graph neural networks 

[20] offer a higher generalization for fault 

diagnosis. Spatial-temporal properties are 

extracted from voltage measurement unit data at 

important busses using temporal recurrent graph 

neural network topologies.

Their computational complexity is a major 

disadvantage, particularly when working with 

high-frequency voltage data and large-scale 

power networks, which result in longer training 

times and higher resource usage.

The Bidirectional Gated Recurrent Unit is 

developed in [21] has high reference values, a 

strong diagnostic performance and the ability to 

precisely diagnose transformer defects. However, 

a single fault diagnostic model is not significantly 

enhance fault diagnosis performance and high 

accuracy necessitates a lengthy training period.  
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More precise problem diagnosis results are 

attained from improved feature vector processing 

due to the Data-Driven Feature Extraction 

(DDFE) Transformer [22]. Nevertheless, its 

reliance on high-quality, labelled datasets which 

aren't always available in real-world grid 

situations where data is noisy, missing or 

unbalanced. Because of its remarkable 

effectiveness, the LSTM-Attention [23] is 

positioned as a very promising solution for 

expanding bearing fault classification 

applications. Their computational complexity is a 

significant disadvantage that make it more 

difficult to detect faults in large-scale grid 

systems in real time. To identify defects and their 

differences, deep fault characterisation is 

extracted using the global Attention temporal 

CNN [24].

Table 1

Survey of existing approaches

References Benefits Drawbacks

Knowledge 

graph method 

[11]

▪ Common faults are easily 

recognized.

▪ For situations with well-defined 

rules, it has a high diagnostic 

efficiency.

▪ Complex fault scenarios are 

challenging to manage.

▪ Unknown fault types have a limited 

capacity for reasoning and their 

reasoning is prone to deviation.

Big data-

driven 

framework 

[12]

▪ Big-scale data is processed 

efficiently and monitored in real 

time.

▪ The system performs better in real 

time and responds faster.

▪ Complex nonlinear relationships in the 

grid system are hard to capture by 

statistically based big data analysis and 

the detection effect is restricted.

GNN [13]

▪ It is possible to manage the intricate 

connections among nodes in the 

grid topology.

▪ The problematic nodes analyse

structured data and are precisely 

positioned.

▪ The electrical grid's dynamic time 

series features are challenging to 

manage.

Improved BP 

neural network 

[14]

▪ It is possible to process the power 

grid's time series data effectively.

▪ Outstanding performance in 

identifying fault features in a time-

dependent manner.

▪ Time series analysis has limited 

relevance to complicated failure 

scenarios and overlooks the power 

grid's topology.

Edge 

computing 

method [15]

▪ Real-time processing capabilities is 

enhanced by the increase in 

computer efficiency.

▪ Future designs is guided by the 

cooperative processing of cloud 

and edge computing.

▪ Complex fault analysis activities are 

beyond the capabilities of a stand-

alone edge computing architecture, 

which requires greater integration with 

cloud computing.

The global attention technique increases the 

accuracy of complex defect identification and the 

mining capacity of deep feature information. 

Additionally, because the attention layers add 

delay that can impede quick reaction in dynamic 

grid systems, GA-TCNNs might have trouble 

detecting faults in real time. The Vision 

Transformer (ViT) model [25] is more capable of 

generalization and diagnosis. Nevertheless, it is 

discovered that the number of ViT models utilized 

for integrated learning had an impact on the fault 

identification process's diagnosis accuracy. Thus, 

a novel Chaotic Attentive Recurrent Transformer 

Network (CARTNet) that integrates chaotic 

dynamics and attention mechanisms is developed. 

The main objectives are,

❖ Integration of preprocessing stage 

eliminate inconsistencies and missing 

values, ensuring high quality data 

appropriate for DL model. 

❖ Incorporation of exploratory analysis for 

extracting new features and encoding 

categorical variables, enabling the model 

to capture hidden fault patterns.

❖ The CARTNet improves temporal and 

contextual feature learning, crucial for 

complex fault diagnosis.
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II. PROPOSED METHODLOGY

The block diagram for fault diagnosis system 

is presented in Fig. 1. It initiates with data 

acquisition where vital data like power system

parameters, fault logs, weather data and 

renewable energy inputs that are gathered from

Smart grid real-time load monitoring Dataset.  

Then, it is fed into pre-processing, where the 

collected data undergoes integration, cleaning and 

exploration to avert inconsistencies, manage 

missing values and structure the data for efficient 

analysis. Subsequently, an exploratory analysis 

extracts new features and encodes categorical 

variables, thereby improving the model’s ability 

to capture hidden fault patterns.

Fig. 1. Block diagram for power grid fault diagnosis.

In data splitting stage, the data is divided into 

training and testing phase. Consequently, it is 

given to CARTNet classifier that incorporates 

chaotic dynamics and attention mechanisms to 

efficiently learn complex temporal dependencies 

and contextual relationships in power grid data, 

allowing precise fault detection. It assures an 

automated, precise and scalable fault diagnosis 

system for modern power grids, enhancing 

reliability and operational efficacy.   

A. Data Preprocessing 

Data pre-processing is the vital step of 

converting raw, unstructured or imperfect data 

from Smart Grid Real-Time Load Monitoring 

Dataset into a clean, reliable and systematized 

format appropriate for DL models. It comprises 

incorporating data from numerous sources, 

managing missing values and eliminating noise or 

errors. Efficient pre-processing improves 

accuracy and performance of fault detection by 

offering high-quality inputs. The stages of pre-

processing are indicated in Fig. 2.

Data Integration

It comprises integrating fault data from 

several sources into a single dataset. Approaches 

such as record linkage and data fusion aid in 

uniting data proficiently, confirming reliability 

and accuracy of fault prediction. 

Fig. 2. Steps in pre-processing.

Data Cleaning

It is the process of predicting and correcting

errors or discrepancies in the power grid dataset.

It comprises managing missing values,

eradicating duplicates and correcting improper

data to assure the dataset is precise and consistent.

Clean data is vital for efficient analysis, as it

enhances the quality of outcomes and improves

the performance of fault classification models.

Data Exploration
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Data exploration is the procedure of analysing

and visualizing fault grid datasets to recognize 

their patterns, structure and key characteristics. It 

aids detect missing values, trends, outliers and 

relationships among variables. It highlights 

correlation among faults and particular grid 

components. Efficient data exploration assures 

improved decision-making in predict the fault on 

grid and model training. Then, an exploratory 

analysis is utilized for extracting the features, as 

discussed below.

B. Exploratory Analysis Based Feature 

Extraction 

An exploratory analysis is a vital stage to 

improve the model performance for intelligent 

fault detection. It comprises analysing the dataset 

to uncover hidden patterns and variable 

relationships by Spearman and Pearson 

correlation. Date time patterns and logical port 

characteristics are explored to understand fault 

timing and distribution.  Hypothesis testing aids 

to statistically validate differences among 

variables like fault origins. Furthermore, 

categorical data is encoded and new features are 

extracted, enabling the model to learn significant 

representations for enhanced fault classification. 

It comprises the following sub stages,

Correlation among the variables

The relationships among the variables are 

found in this stage. The Spearman correlation 

finds the monotonic relationship amongst the 

variables and Pearson correlation finds the linear 

relationship. In pairs of variables, the 

relationships are found and data distribution is 

plotted with the aid of heat maps.

Date time analysis of fault diagnosis and

detailed analysis of logical ports

To find patterns and understand the timing of 

the fault's tactics, a detailed analysis of the fault's 

date and time is exploited. Each fault is 

represented by a point connected to the 

destination port in a scatterplot that is made for 

analysis. The behaviour of the source and 

destination logical ports during the grid fault is 

analysed.

Summarizing statistics by hypothesis testing

Hypothesis testing is used to identify the 

important findings from an experiment. It is 

reasonable to do a statistical test to see if the 

means of the two groups are different, that is, if 

the mean of the fault assaults' source ports is 

different from the mean of their destination ports. 

Hypothesis testing is one of the most important 

concepts since it allows one to ascertain whether 

a phenomenon occurred, whether specific 

treatments are effective, whether groups are 

different from one another or whether one 

variable predicts another.

C. Chaotic Attentive Recurrent Transformer 

Network Based Classification

The growing complexity of power grids 

requires fault diagnosis system capable of 

capturing both local fluctuations and global 

dependencies. To overcome these requirements,

the CARTNet is developed that efficiently 

incorporates chaotic dynamics, local recurrent 

structures and attention mechanisms for reliable 

classification of power grid faults. Fig. 3 depicts 

the structure of CARTNet classifier.  The original 

long sequence is segmented into overlapping 

windows of size ,M where each window 

comprises local information ending at a target 

position, 

1 2, ,  ,  
tt M t M xM x x− + − +=                  (1)

Each window is processed via a chaotic RNN 

and is improved with controlled chaotic signals 

that simulate nonlinear distributions in grid 

behaviour. The occurrence of chaos introduces 

variability and sensitivity into the network, 

enabling it to detect minor oscillations and 

transient anomalies. The hidden representation of 

each local sequence is,

( )1 2, ,      ,
tt t M t M xh Local RNN x x− + − +=           (2)

Here, the chaotic RNN processes each window 

independently. By sliding the window over the 

sequence, CARTNet generates the local hidden 

vector representation for the entire sequence as,

  ( )1 2   1 2, , ,     , , ,N Nh h h Local RNN x x x=     (3)

These local vectors form the primary 

representation layer, capturing spatially localized 

behaviours like hidden surges or drops in signal 

magnitude that are vital in detecting faults.

Nevertheless, these faults often has complex 

propagation and impact patterns over time. To 

capture long term dependencies over grid data, 

CARTNet incorporates a multi head self-attention 

mechanism improved with chaotic dynamics to 

evade over fitting and assure diverse feature 

extraction. The attention based updated hidden 

representation is,

( )1 2, ,  ,t tu MultiHead Attention h h h=         (4)
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This stage incorporates context over the 

sequence, enabling each position to attend to 

relevant signals. The attention mechanism is 

comprised of multiple independent heads. Those 

outputs are concatenated and transformed using 
oW to generate the final contextual vector, 

( ) ( ) ( )( )1 2  , , , o

t t t k tu Concatenation head h head h head h W= (5)

This multi-perspective view strengthens the 

model allowing it to learn diverse features related 

to the types and locations of faults. Where, the 

linearization mapping matrix is denoted as 

   o thW and k attention head’s result is ( ).k thead h

Each attention head applies a weighted sum based 

on similarity among queries and keys,

1 2,,
T

n

k

QK
softmax V

d
  

 
  =     

 

        (6)   

The output of each head is the weighted sum 

of values based on the attention score, 

( )
1

n

i t j j

j

head h v
=

=                       (7)

The inclusion of chaos modulated dynamics in 

attention enhances generalization and diminishes 

the risk of over fitting on particular patterns.

Where, the matrix of query, keys and values are 

denoted by ,     .Q K andV The chaotic component 

impacts these projections to simulate variations in 

signal behaviour under different fault conditions,

  q

tq W h=        (8)

k

j jk W h=   (9)

            v

j jv W h=                   (10)

Fig. 3. Structure of CARTNet.

These projections are dynamically adjusted in 

training, enabling the attention mechanism to 

evolve and adapt to diverse signal contexts. Each 

attended output is passed via a feed forward 

network that introduces extra nonlinearity. It 

improves the capacity of model to transform 

features and enhances classification robustness.  

A feed forward network applies a nonlinear 

transformation as, 

( ) ( )1 1 2 20,t tFeedForward m max u W b W b= + +   (11)

The ReLU activated transformation offers 

nonlinear capabilities vital for capturing complex 

feature interactions. Layer normalization and 

residual connections stabilize the network at each 

stage. The 3-layer CARTNet processes contextual 

embedding  1 2, , , nRc rc rc rc= as follows for 

each layer ,i

( )1 2 1 2, , ,   , , ,i i i i i i

n nLocalRNN rc rc rc    =     (12)

( )1 2 1 1, , , , ,i i i i i i i

n n nLayerNorm rc rc      = + + 

(13)

( )1 1, , , ,i i i i

n nu u MultiHeadAttention    =    (14)

( )1 1 1, , , ,i i i i i i

n n nu u LayerNorm u u   = + +  (15)

( )1 1, , , ,i i i i

n nv v FeedForward u u  =        (16)

( )1 1

1 1 1, , , ,i i i i i i

n n nr r LayerNorm v u v u+ +  = + +  (17)

After 3 layers, the final hidden state indicating 

the power grid sequence as, 

1 2, , ,  n r r r

r nH h h h =             (18)

This output is a comprehensive embedding of 

the input signal, enriched with temporal and 

spatial fault characteristics. CARTNet utilizes a 

self-attention mechanism to extract fault relevant
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features, focusing on specific grid components. 

For the aspect sequence hidden vectors , i

th

( ) ( )i i

t a t ah tanh W h b = +               (19)

( )( )
( )( )1

 

i

t

i m i

tj

exp h

exp h





=

=


           (20)

The aspect representation is, 

         
1

m
i

t i t

i

V h
=

=             (21)

The aspect specific context information sV is 

extracted by weighting the global hidden vectors, 

( )( )
( )( )1

,

,

i

r t

i n i

r tj

exp h V

exp h V





=

=


            (22)

1

 
m

n

s i r

i

V h
=

=                  (23)

The average hidden vector of the aspect term 

offers additional context as,

1

1 m
i

avg t

i

M h
m =

=                        (24)

The fault classification integrates sV and avgM

as,

,avg sZ M V =       (25)

Non-linear transformation and Softmax 

activation yield the probability of fault classes, 

( )r rx tanh W Z b= +         (26)

( )s sy softmax W x b= +               (27)

The integration of chaotic dynamics enhances 

exploration, averts convergence to suboptimal 

patterns and improves sensitivity to grid 

disturbances, making CARTNet a powerful 

solution for intelligent fault diagnosis in modern 

power grid systems.

III. RESULT AND DISCUSSIONS 

This section demonstrates the outcomes of 

CARTNet classifier for intelligent power grid 

fault diagnosis in Python software and also 

comparison with state-of-the-art approaches are 

also included in this section. The power 

consumption vs grid supply for highlighting fault 

cases is illustrated in Fig. 5. 

The scattered distribution depicts the 

transformer faults occur over a wide range of 

power consumption and grid supply levels. The 

dense clustering of blue points indicates most 

operations remain no fault and red points denotes 

fault class. It validates the complexity of data set 

and significance of robust fault diagnosis 

mechanism.   

Fig. 4. Data distribution.

Fig. 4 represents the data distribution for fault 

and not fault classes. Both has an equal rate with 

96,644 instances that assures unbiased model 

training and evaluation. The separation of classes 

offers optimal conditions for binary classification 

with the aid of CARTNet. It contributes to 

improved fault detection accuracy and averts over 

fitting toward any particular class.

Fig. 5. Power consumption vs grid supply.

Fig. 6 depicts the density distribution of power 

consumption.  It exposes the most power 

consumption values lie among 2kW and 12kW 

with peak density regions denoting higher data 

concentrations. Lower density values denotes 

minimal extreme operating conditions like 

comprehensive coverage over the dataset 

improves the learning ability of CARTNet, 

allowing accurate fault detection.
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Fig. 6. Density plot.

Fig. 7. Power factor distribution.

The power factor distribution is presented in 

Fig. 7.  It reveals the fault occurrences are more 

frequent in lower power factor bins replicating 

degraded operating efficacy leading to faults. The 

higher power factor has fewer faults and more 

stable operation. It aids the ability of model to 

diagnose faults impacted by system efficacy 

variations.  

Fig. 8. Electricity price distribution.

Fig. 8 presents an electricity price distribution. 

This uniform distribution denoting diverse pricing 

scenarios are represented for model training. This 

variation reflects real market conditions, where 

electricity price fluctuations impact operational 

patterns. It confirms that dataset captures 

economic diversity vital for intelligent grid fault 

dia

The training and validation results is displayed 

in Fig. 10. The training and validation accuracy 

has the nearest value of 99.9% and training and 

validation losses are below 0.01 has minimal 

prediction errors. It confirms the ability of 

CARTNet model for precise fault detection with 

minimal over fitting. The confusion matrix is 

indicated in Fig. 11. Here, the true negative value 

is 29000 denoting no fault is properly predicted 

while true positive has the value of 28915, 

indicating correct fault prediction. False positives 

are 72 showing incorrect fault alarm and false 

negative is 0, denoting no missed faults. It 

highlights the efficacy for real time intelligent 

grid monitoring and fault management. 

Fig. 12 presents the ROC curve that evaluates 

the performance of the classifier model. The AUC 

value is 0.99998 for both classes, denoting the 

robustness in managing imbalanced grid 

conditions. It precisely identify faults while 

diminishing incorrect alarms, crucial for smart 

grid stability and safety.

Fig. 13 depicts the analysis of accuracy for LSTM 

[26], Stacked Auto Encoder (SAE) [27], Multi-

Layer Perceptron (MLP) [28] and CARTNet 

approach. The LSTM attains the accuracy of 

95.31% while the SAE enhances the performance 

with 97.52% accuracy. Then, the MLP has the 

92.91% accuracy and the developed approach has 

the better value of 99.88%, thereby enhancing the 

superior capability of CARTNet to capture 

temporal dependencies for precise prediction of 

fault.     

Fig. 11. Confusion matrix.

An analysis of precision and recall for Logistic 

Regression (LR) [16] and developed approach is 

revealed in Fig. 14. The LR has the precision and 

recall of 97.22% and 95.83%, denoting moderate 

fault detection ability. errors. 
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Fig. 12. ROC curve.

On the other hand, the CARTNet has the

precision and recall of 99.75% and 99.88%, 

demonstrates its ability to deliver reliable, real-

time fault diagnosis with minimal

   

Fig. 13. Analysis of accuracy.

Fig. 10. Training and validation results.

Fig. 14. Analysis of precision and recall.  

The comparison of computational time for 

LSTM [26], SAE [27], MLP [28] and CARTNet 

approach. The LSTM, SAE and MLP has the 

computational time of 0.1656s, 0.1693s and 

1.5454 s while the CARTNet has the 

computational time of 0.151 s, there by balancing 

both high performance and acceptable 

computational efficacy for smart grid 

applications.

  

Fig. 15. Analysis of computational time.

Table 2

Analysis of energy consumption and latency

Approaches

Energy 

consumption

( )kWh

Latency 

( )ms

GNN-

transformer 

fusion

8.2 150

Proposed 7.9 139
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The Table 2 compares the energy 

consumption and latency among the GNN-

transformer fusion [8] and developed approach. 

The GNN-transformer fusion has the energy 

consumption of 8.2 kWh and latency of 150 ms. 

Also, the CARTNet approach has the reduced 

energy consumption of 7.9 kWh and latency of 

139 ms, allowing faster, real-time fault detection 

critical for grid stability.

IV. CONCLUSION 

This research implements an innovation approach 

for fault diagnosis on the power grid. The pre-

processing stage enhances the reliability and quality of 

data, diminishing the influence of inconsistencies and 

missing values. By efficiently incorporating chaotic 

dynamics into the recurrent transformer structure, 

CARTNet improves the model's capability to capture 

difficult temporal dependencies and sudden variations 

of power grid disturbances. The self-attention 

mechanism further assures that both global and local

fault- features are proficiently extracted, allowing 

exact fault classification even in the occurrence of 

noisy or incomplete data. This research is applied in 

Python software, demonstrates that the CARTNet 

approach attains better diagnostic accuracy of 99.88%, 

faster response time and better generalization under 

diverse grid operating conditions. The CARTNet 

approach not only advances the field of intelligent fault 

diagnosis but also contributes towards developing 

smarter and secure power grid infrastructures. Thus, 

CARTNet serves as a promising solution for 

improving situational awareness, operational efficacy

and security in modern power systems.
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