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Abstract. The main objective of this study is to enhance the intelligence level of power grid fault
diagnosis systems to address increasingly complex fault scenarios and ensure the overall security,
stability, and resilience of modern power grids. Traditional diagnostic methods often fall short in
handling high-dimensional, nonlinear, and dynamic data generated in smart grid environments. To
overcome these limitations, this research proposes a data-driven framework based on Deep Learning
(DL), introducing a novel hybrid architecture called the Chaotic Attentive Recurrent Transformer
Network (CARTNet). The proposed method begins with comprehensive data acquisition from various
sources, including fault logs, real-time system parameters, weather data, and renewable energy outputs.
The data undergoes preprocessing steps such as integration, cleaning, and advanced exploratory analysis
to improve quality and extract latent features. CARTNet is specifically designed to model nonlinear
dynamics and temporal dependencies in time-series data by synergistically combining chaotic system
modeling with attention-based recurrent transformer mechanisms, allowing for more accurate and robust
fault identification. The most important results are demonstrated through extensive simulations using
Python, where CARTNet achieves a fault diagnosis accuracy of 99.88%, significantly outperforming
conventional deep learning models. Its ability to learn complex patterns and adapt to diverse data inputs
ensures reliable and timely fault detection. The significance of the obtained results is that CARTNet
provides a powerful and scalable solution for intelligent fault diagnosis in smart grids, laying a strong
technological foundation for the future of automated and resilient power system operations.
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Retea haotica atenta de transformatoare recurente pentru diagnosticarea inteligenta a defectiunilor retelei
electrice
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Rezumat. Obiectivul principal al acestui studiu este de a imbunatati nivelul de inteligentd al sistemelor de
diagnosticare a defectiunilor retelelor electrice pentru a aborda scenarii de defectiuni din ce in ce mai complexe si
pentru a asigura securitatea, stabilitatea si rezilienta generala a retelelor electrice moderne. Metodele traditionale
de diagnosticare sunt adesea insuficiente in gestionarea datelor de inaltd dimensiune, neliniare si dinamice generate
in mediile de retele inteligente. Pentru a depasi aceste limitari, aceastd cercetare propune un cadru bazat pe date,
bazat pe Deep Learning (DL), introducdnd o noud arhitecturd hibridd numitd Chaotic Attentive Recurrent
Transformer Network (CARTNet). Metoda propusa incepe cu achizitia completa de date din diverse surse, inclusiv
jurnale de defectiuni, parametri de sistem 1n timp real, date meteorologice si iesiri de energie regenerabila. Datele
trec prin etape de preprocesare, cum ar fi integrarea, curatarea si analiza exploratorie avansata, pentru a imbunatati
calitatea si a extrage caracteristici latente. CARTNet este special conceput pentru a modela dinamica neliniara si
dependentele temporale in datele din seriile de timp, combindnd sinergic modelarea sistemului haotic cu
mecanismele de transformare recurenta bazate pe atentie, permitand o identificare a defectiunilor mai precisa si
robusta. Cele mai importante rezultate sunt demonstrate prin simulari extinse folosind Python, unde CARTNet
atinge o precizie de diagnosticare a defectiunilor de 99,88%, depasind semnificativ modelele conventionale de
deep learning. Capacitatea sa de a Invata modele complexe si de a se adapta la diverse intrari de date asigurd o
detectare fiabila si la timp a defectiunilor. Semnificatia rezultatelor obtinute consta in faptul ca CARTNet ofera o
solutie puternica si scalabila pentru diagnosticarea inteligenta a defectiunilor in retelele inteligente, punand o baza
tehnologica solida pentru viitorul functionarii automate si reziliente a sistemelor energetice.
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Cuvinte-cheie: achizitie de date, preprocesare, analiza exploratory.

XaoTuyeckasi, OCCHOBAHHAS HA BHUMAHHM, PeKyPPeHTHAsA TpaHcopMepHasi ceTh A1 MHTE/IEKTYAIbHOMH
AUATHOCTHKH HEHCNIPABHOCTEH 3J1eKTPOCeTH
Kumope P. [I., 2’Kupan A. T., 2A6xunas A., 2Kymap C., 2Koymuk C. Y.
1YHMBepCMTeT Tl'onaBapu, Pamxxamannpu, Unaus
2HMHcTUTyT HHKEHEPUH U TexHoNoruii onasapu (A), Pamkamanapu, Unus

Annomayus. OCHOBHAs II€Tb JaHHOTO MCCIICIOBAHMS — IOBBICUTh YPOBEHb MHTEIUICKTAa CUCTEM AWArHOCTHKH
HEHCIPaBHOCTEH 3JEKTpOCETeH Il penIeHus! BCE 00Jiee CI0XKHBIX CLIEHAPHEB HEHCIPABHOCTEH U 0OecTIeueH s
o0mrelt 6e30macHOCTH, CTAaOWIBHOCTH W OTKAa30yCTOMYMBOCTH COBPEMEHHBIX JJIeKTpocerell. TpamulmoHHEIE
METOJbl AWATHOCTHKH YacTO HE CHPABIAIOTCA C 00paOOTKOW MHOTOMEpPHBIX, HEIMHEHHBIX M JUHAMHIECKUX
JAHHBIX, TEHEPHPYEMBIX B HHTEIUIEKTyallbHBIX CeTsAX. [ NpeoqoreHHs STUX OrpaHUYEHHH B JaHHOM
WCCIIEJIOBAaHUH TIPEJIaracTcsl yrnpasisieMas JaHHBIMH HMH(PacTpyKTypa, OCHOBaHHAas Ha IIyOOKOM OOydeHUH
(I'O), mpencrasisitomas coboif HOBYIO THOPUAHYIO apXHTEKTYypy, Ha3bIBaEMYI0 XaOTHYECKOW BHHMATEIbHOU
pekyppenTHoii TpaHchopmaropHoit cetpto (CARTNet). Ilpennmaraemerii Mmeton HauuHaeTcsi co cbopa
KOMIUJICKCHBIX IaHHBIX U3 Pa3IMIHBIX HCTOUYHUKOB, BKIIIOYAs XKypHAIbl HEUCTIPABHOCTEH, CUCTEMHBIE ITapaMeTphl
B pEaJbHOM BPEMEHH, METEOPOJIOTHUECKHE JaHHbBIC U JaHHbIE O BBIPA0OTKE BO30OHOBIISIEMO SHEprur. JlaHHbIe
NPOXOJAT OTanbl NpPEABAPUTENHLHOM 00paboOTKM, Takue Kak MHTEerpanus, OYHWCTKAa W paclIMpeHHbIH
HCCIIeIOBATENIbCKUM aHaNN3, A TOBBIIICHUS KadecTBAa M BBIABJIEHHS CKPBITBIX mnpu3HakoB. CARTNet
CHEIUATbHO pPa3paboTaH [UIl MOJCIUPOBAHMA HEIMHEWHONW NUHAMHMKA M BPEMEHHBIX 3aBHCHMOCTEH BO
BPEMEHHBIX pAJaX IaHHBIX IMyTEM CHHEPreTHYECKOrO COYETAHMS MOJECIMPOBAHUS XAOTHYECKHX CUCTEM C
PEKYPPEHTHBIMU TPaHC()OPMATOPHBIME MEXaHW3MaMH, OCHOBaHHBIMH Ha BHHMAaHUH, 9TO OOecIeynBacT Oosee
TOYHYIO ¥ Ha&)XHYI0 HACHTH(NKaMIo HeucnipaBHocTel. Hanbosee BaxkHBIE PE3yNIbTaThI IIPOAEMOH CTPHPOBAHBI
¢ moMompio obmupHOTro MozenmupoBanus Ha Python, rme CARTNet mocturaeT TOYHOCTH IHATHOCTHKH
HencnpaBHocTeid 99.88%, 3HAUNTEILHO MPEBOCXOIs TPAAUITHOHHBIC MOJIENIU ITyOoKoro ooydeHus. CiocoOHOCTh
CARTNet u3yuaTh CIOXHBIC 3aKOHOMEPHOCTH M aJalNTHPOBAThCS K Pa3HOOOpa3HBIM BXOIHBIM JaHHBIM
oOecrieynBaeT HaJEKHOE M CBOECBPEMEHHOE OOHApyKeHHE HEHCIPABHOCTEH. 3HAYMMOCTh IOJIYYEHHBIX
pe3ynbTaroB 3akmouaercs B ToM, uto CARTNet npencrasisier coboii MOIIHOE U MacITabUpyeMoe peleHne st
MHTEJUICKTYadbHON [HarHOCTUKM HEHCIPABHOCTEH B HHTEIUIEKTYyaJbHBIX CeTSIX, 3aKjajblBas IPOYHYIO
TEXHOJIOTUUECKYIO OCHOBY JUIsl Oy IyIIero aBTOMaTH3UPOBAHHOM U YCTOMYMBOM PabOThI YHEPTOCUCTEM.

Knroueeswle cnosa: cOOp NaHHBIX, MPEABAPUTENIbHAS 00pa00TKa, UCCIISIOBATEIILCKUN aHATU3.

The conventional approaches Regression
I. INTRODUCTION analysis [16], Support Vector Machine (SVM)
The harmless and stable operation of the  [17], CNN [18] and Long Short Term Memory
power system is ensured by prompt and precise ~ (LSTM) [19] are exploited in fault diagnosis on
power grid fault diagnostics, which also helps to  the grid. However, that approaches are trouble
system recovery procedures [1, 2]. Model-based  with multi-class classification issues, decreased
and data-driven approaches are commonly used in  susceptibility and inferior classification accuracy.
fault diagnosis techniques [3]. Validated system  The temporal recurrent graph neural networks
models that accurately depict the failure effectsin ~ [20] offer a higher generalization for fault
both healthy and flawed scenarios are necessary  diagnosis.  Spatial-temporal  properties are
for model-based approaches [4-6]. The power  extracted from voltage measurement unit data at
grid dispatching centre receives a large amount of  important busses using temporal recurrent graph
alarm data as soon as a defect occurs due to the  neural network topologies.
growth of the smart grid and the expanding use of Their computational complexity is a major
intelligent electronic devices in the power grid  disadvantage, particularly when working with
[7]. Itis an extremely challenging for dispatchers  high-frequency voltage data and large-scale
to identify malfunctioning devices based on  power networks, which result in longer training
operational knowledge due to the intricate logical  times and higher resource usage.
linkages among alarm information. Finding the The Bidirectional Gated Recurrent Unit is
fault elements is the primary goal of power system  developed in [21] has high reference values, a
diagnosis when a malfunction occurs [8,9]. DL is  strong diagnostic performance and the ability to
used in several power system domains, including  precisely diagnose transformer defects. However,
fault diagnostics, because of its potent learning  a single fault diagnostic model is not significantly
capabilities [10]. enhance fault diagnosis performance and high
accuracy necessitates a lengthy training period.
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More precise problem diagnosis results are
attained from improved feature vector processing
due to the Data-Driven Feature Extraction
(DDFE) Transformer [22]. Nevertheless, its
reliance on high-quality, labelled datasets which
aren't always available in real-world grid
situations where data is noisy, missing or

positioned as a very promising solution for
expanding bearing fault classification
applications. Their computational complexity is a
significant disadvantage that make it more
difficult to detect faults in large-scale grid
systems in real time. To identify defects and their
differences, deep fault characterisation is

unbalanced. Because of its remarkable extracted using the global Attention temporal
effectiveness, the LSTM-Attention [23] is  CNN [24].
Table 1
Survey of existing approaches
References Benefits Drawbacks
= Common faults are easily|= Complex fault scenarios are
Knowledge recognized. challenging to manage.
graph method | = For situations with well-defined | = Unknown fault types have a limited
[11] rules, it has a high diagnostic capacity for reasoning and their
efficiency. reasoning is prone to deviation.
Big data- O EluERR R [ [OSSE Complex nonlinear relationships in the
. efficiently and monitored in real -
driven ; grid system are hard to capture by
time. " . .
framework . h f b . | statistically based big data analysis and
[12] The system performs better in rea the detection effect is restricted
time and responds faster. '
It is possible to manage the intricate
C(r)irénf;tlocigs 23y [OLEs [ 1 The electrical grid's dynamic time
GNN [13] g pology. series features are challenging to
The problematic nodes analyse
. manage.
structured data and are precisely
positioned.
It is possible to process the power . . . -
Improved BP grid's time series data effectively. Ul SETiE analy3|s_ 2 Im_uted
. . relevance to complicated failure
neural network Outstanding  performance  in .
. e . . scenarios and overlooks the power
[14] identifying fault features in a time- rid's tonolo
dependent manner. g pology.
Real-time processing c_apabllltles 1S Complex fault analysis activities are
enhanced by the increase in
Edge P beyond the capabilities of a stand-
. computer efficiency. . .
computing . . i alone edge computing architecture,
Future designs is guided by the . X . . .
method [15] . . which requires greater integration with
cooperative processing of cloud .
- cloud computing.
and edge computing.

The global attention technique increases the
accuracy of complex defect identification and the
mining capacity of deep feature information.
Additionally, because the attention layers add
delay that can impede quick reaction in dynamic
grid systems, GA-TCNNs might have trouble
detecting faults in real time. The Vision
Transformer (ViT) model [25] is more capable of
generalization and diagnosis. Nevertheless, it is
discovered that the number of ViT models utilized
for integrated learning had an impact on the fault
identification process's diagnosis accuracy. Thus,
a novel Chaotic Attentive Recurrent Transformer
Network (CARTNet) that integrates chaotic
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dynamics and attention mechanisms is developed.
The main objectives are,
« Integration of preprocessing stage
eliminate inconsistencies and missing
values, ensuring high quality data
appropriate for DL model.
Incorporation of exploratory analysis for
extracting new features and encoding
categorical variables, enabling the model
to capture hidden fault patterns.
« The CARTNet improves temporal and
contextual feature learning, crucial for
complex fault diagnosis.
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Il. PROPOSED METHODLOGY

The block diagram for fault diagnosis system
is presented in Fig. 1. It initiates with data
acquisition where vital data like power system
parameters, fault logs, weather data and
renewable energy inputs that are gathered from
Smart grid real-time load monitoring Dataset.

Then, it is fed into pre-processing, where the
collected data undergoes integration, cleaning and
exploration to avert inconsistencies, manage
missing values and structure the data for efficient
analysis. Subsequently, an exploratory analysis
extracts new features and encodes categorical
variables, thereby improving the model’s ability
to capture hidden fault patterns.

[

| OWERSVSTIM ,--‘

" FARALTE @

[

I

[

, FAULY LOGs |
; A
! ‘

' oweamix

/TEX\

DATA J

“‘ wm ldlly

1 rrrocrsan

\
AR ARL
ALy

O}

FERFORMANCE METRICS

[y ] [roaces | <T\
[W] m} VAL AN

1CANT

DA

INTVGRATION

Daks
EAFLORATION

g—

‘l JAOTIC ATTENTIVE RECURRENT
II(A\\I MRMER N TV 0K,

NN

™
NIRRT
FEATLR S

@I

v !

! v
TRAINING \IU‘J] I TENTING SIAGE I

Cron u...u> [%

« \!llmlui u
FEATURES

DPATACLEANING [ ANALY SIS

'®
| “

CLASSITN ATION

Fig. 1. Block diagram for power grid fault diagnosis.

In data splitting stage, the data is divided into
training and testing phase. Consequently, it is
given to CARTNet classifier that incorporates
chaotic dynamics and attention mechanisms to
efficiently learn complex temporal dependencies
and contextual relationships in power grid data,
allowing precise fault detection. It assures an
automated, precise and scalable fault diagnosis
system for modern power grids, enhancing
reliability and operational efficacy.

A. Data Preprocessing

Data pre-processing is the vital step of
converting raw, unstructured or imperfect data
from Smart Grid Real-Time Load Monitoring
Dataset into a clean, reliable and systematized
format appropriate for DL models. It comprises
incorporating data from numerous sources,
managing missing values and eliminating noise or
errors.  Efficient  pre-processing  improves
accuracy and performance of fault detection by
offering high-quality inputs. The stages of pre-
processing are indicated in Fig. 2.

Data Integration

It comprises integrating fault data from
several sources into a single dataset. Approaches
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such as record linkage and data fusion aid in
uniting data proficiently, confirming reliability
and accuracy of fault prediction.
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Fig. 2. Steps in pre-processing.
Data Cleaning

It is the process of predicting and correcting
errors or discrepancies in the power grid dataset.
It comprises managing missing values,
eradicating duplicates and correcting improper
data to assure the dataset is precise and consistent.
Clean data is vital for efficient analysis, as it
enhances the quality of outcomes and improves
the performance of fault classification models.

Data Exploration
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Data exploration is the procedure of analysing
and visualizing fault grid datasets to recognize
their patterns, structure and key characteristics. It
aids detect missing values, trends, outliers and
relationships among variables. It highlights
correlation among faults and particular grid
components. Efficient data exploration assures
improved decision-making in predict the fault on
grid and model training. Then, an exploratory
analysis is utilized for extracting the features, as
discussed below.

B. Exploratory Analysis
Extraction

An exploratory analysis is a vital stage to
improve the model performance for intelligent
fault detection. It comprises analysing the dataset
to uncover hidden patterns and variable
relationships by Spearman and Pearson
correlation. Date time patterns and logical port
characteristics are explored to understand fault
timing and distribution. Hypothesis testing aids
to statistically validate differences among
variables like fault origins. Furthermore,
categorical data is encoded and new features are
extracted, enabling the model to learn significant
representations for enhanced fault classification.
It comprises the following sub stages,

Based Feature

Correlation among the variables

The relationships among the variables are
found in this stage. The Spearman correlation
finds the monotonic relationship amongst the
variables and Pearson correlation finds the linear
relationship. In  pairs of variables, the
relationships are found and data distribution is
plotted with the aid of heat maps.

Date time analysis of fault diagnosis and
detailed analysis of logical ports

To find patterns and understand the timing of
the fault's tactics, a detailed analysis of the fault's
date and time is exploited. Each fault is
represented by a point connected to the
destination port in a scatterplot that is made for
analysis. The behaviour of the source and
destination logical ports during the grid fault is
analysed.

Summarizing statistics by hypothesis testing

Hypothesis testing is used to identify the
important findings from an experiment. It is
reasonable to do a statistical test to see if the
means of the two groups are different, that is, if
the mean of the fault assaults’ source ports is
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different from the mean of their destination ports.
Hypothesis testing is one of the most important
concepts since it allows one to ascertain whether
a phenomenon occurred, whether specific
treatments are effective, whether groups are
different from one another or whether one
variable predicts another.

C. Chaotic Attentive Recurrent Transformer
Network Based Classification

The growing complexity of power grids
requires fault diagnosis system capable of
capturing both local fluctuations and global
dependencies. To overcome these requirements,
the CARTNet is developed that efficiently
incorporates chaotic dynamics, local recurrent
structures and attention mechanisms for reliable
classification of power grid faults. Fig. 3 depicts
the structure of CARTNet classifier. The original
long sequence is segmented into overlapping
windows of size M,where each window
comprises local information ending at a target
position,

M)

Each window is processed via a chaotic RNN
and is improved with controlled chaotic signals
that simulate nonlinear distributions in grid
behaviour. The occurrence of chaos introduces
variability and sensitivity into the network,
enabling it to detect minor oscillations and
transient anomalies. The hidden representation of
each local sequence is,

h[ = Local RNN (Xt—M+1’ X _M+2,, % ) (2)

Here, the chaotic RNN processes each window
independently. By sliding the window over the
sequence, CARTNet generates the local hidden
vector representation for the entire sequence as,

[h,h,, -, hy ]=Local RNN (%, %,, -+, %) (3)

These local vectors form the primary
representation layer, capturing spatially localized
behaviours like hidden surges or drops in signal
magnitude that are vital in detecting faults.
Nevertheless, these faults often has complex
propagation and impact patterns over time. To
capture long term dependencies over grid data,
CARTNet incorporates a multi head self-attention
mechanism improved with chaotic dynamics to
evade over fitting and assure diverse feature
extraction. The attention based updated hidden
representation is,

M = X _Ma1r KoMz, X

u, = MultiHead Attention(h,h, ) (4)



PROBLEMELE ENERGETICII REGIONALE N (NN) AAAA

This stage incorporates context over the
sequence, enabling each position to attend to
relevant signals. The attention mechanism is
comprised of multiple independent heads. Those
outputs are concatenated and transformed using
W° to generate the final contextual vector,

u, = Concatenation(head, (h, ), head, (h, ),---,head, (h,))W° (5)

This multi-perspective view strengthens the
model allowing it to learn diverse features related
to the types and locations of faults. Where, the
linearization mapping matrix is denoted as
W°and k" attention head’s result is head, (h,).

Each attention head applies a weighted sum based
on similarity among queries and keys,

QK' ]V

N (6)

(a0, 2, |= softmax{

The output of each head is the weighted sum
of values based on the attention score,
head, (h ) => oy, (7)

j=1
The inclusion of chaos modulated dynamics in
attention enhances generalization and diminishes
the risk of over fitting on particular patterns.

Where, the matrix of query, keys and values are
denoted by Q,KandV. The chaotic component

impacts these projections to simulate variations in
signal behaviour under different fault conditions,

q=Wh ©®)
k, =W*h, )
v; =W'h, (120)
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'
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Fig. 3. Structure of CARTNet.

These projections are dynamically adjusted in
training, enabling the attention mechanism to
evolve and adapt to diverse signal contexts. Each
attended output is passed via a feed forward
network that introduces extra nonlinearity. It
improves the capacity of model to transform
features and enhances classification robustness.
A feed forward network applies a nonlinear
transformation as,

FeedForward (m, ) = max(0,uW, +b, )W, +b, (11)

The ReLU activated transformation offers
nonlinear capabilities vital for capturing complex
feature interactions. Layer normalization and
residual connections stabilize the network at each
stage. The 3-layer CARTNet processes contextual
embedding Rc=[rc,rc,,---,rc,]as follows for

each layeri,

i
n

(&, @), -, 0, ] = LocalRNN gy, rcj, -+, 1} ) (12)
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(&, @)+, | = LayerNorm (e + ¢/, 0} + ¢} )
(13)
Uy | = MultiHeadAttention (e ,---, @} ) (14)

i
11°

[u
[u{u'nJ = LayerNorm(u} +ay,--,u, +a);) (15)

[ )

(A ]: LayerNorm(vli +u1i,~-,V,i1 +U:,) 17)

i
n

Vli,...,vin]:FeedForwal’d (Uji_,---,u (16)

. ri+l

1 * 1'n

[

After 3 layers, the final hidden state indicating
the power grid sequence as,

Hr”:[h[,hzr,---,hr]

This output is a comprehensive embedding of
the input signal, enriched with temporal and
spatial fault characteristics. CARTNet utilizes a
self-attention mechanism to extract fault relevant

(18)
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features, focusing on specific grid components.
For the aspect sequence hidden vectors K,

y(h')=tanh(W,h +b, ) (19)
- el 0)
X ee(r(v))
The aspect representation is,
V.= Yo (21)

The aspect specific context information V. is
extracted by weighting the global hidden vectors,

o0(r(1)

P | 22
> en(r(W.V,)) 2
v, = SN (23)

The average hidden vector of the aspect term
offers additional context as,

18,
2t

The fault classification integrates v, and M,
as,

Mg (24)

M. V.

avg’ Vs

2= (M.,

Non-linear transformation and Softmax
activation yield the probability of fault classes,

x=tanh(W,Z +b,) (26)

(25)

y = softmax (W, x+b;) (27)

The integration of chaotic dynamics enhances
exploration, averts convergence to suboptimal
patterns and improves sensitivity to grid
disturbances, making CARTNet a powerful
solution for intelligent fault diagnosis in modern
power grid systems.

I11. RESULT AND DISCUSSIONS

This section demonstrates the outcomes of
CARTNet classifier for intelligent power grid
fault diagnosis in Python software and also
comparison with state-of-the-art approaches are
also included in this section. The power
consumption vs grid supply for highlighting fault
cases is illustrated in Fig. 5.
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The scattered distribution depicts the
transformer faults occur over a wide range of
power consumption and grid supply levels. The
dense clustering of blue points indicates most
operations remain no fault and red points denotes
fault class. It validates the complexity of data set
and significance of robust fault diagnosis
mechanism.

Transformer Fault Chart

Transformer Fault
mmm Not Fault - 0
Fault - 1

Fault (96644) 50/0% Not Fault (96644)

Fig. 4. Data distribution.

Fig. 4 represents the data distribution for fault
and not fault classes. Both has an equal rate with
96,644 instances that assures unbiased model
training and evaluation. The separation of classes
offers optimal conditions for binary classification
with the aid of CARTNet. It contributes to
improved fault detection accuracy and averts over
fitting toward any particular class.

Power Consumption vs Grid Supply

Gnid Supply (kw)

Transformer Fault

Power Consumption (kW)

Fig. 5. Power consumption vs grid supply.

Fig. 6 depicts the density distribution of power
consumption. It exposes the most power
consumption values lie among 2kW and 12kW
with peak density regions denoting higher data
concentrations. Lower density values denotes
minimal extreme operating conditions like
comprehensive coverage over the dataset
improves the learning ability of CARTNEet,
allowing accurate fault detection.
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Density Plot
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Fig. 6. Density plot.

Power Factor Distribution by Transformer Fault

Fig. 7. Power factor distribution.

The power factor distribution is presented in
Fig. 7. It reveals the fault occurrences are more
frequent in lower power factor bins replicating
degraded operating efficacy leading to faults. The
higher power factor has fewer faults and more
stable operation. It aids the ability of model to
diagnose faults impacted by system efficacy
variations.

Electricity Price Distribution

Fig. 8. Electricity price distribution.

Fig. 8 presents an electricity price distribution.
This uniform distribution denoting diverse pricing
scenarios are represented for model training. This
variation reflects real market conditions, where
electricity price fluctuations impact operational
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patterns. It confirms that dataset captures
economic diversity vital for intelligent grid fault
dia

The training and validation results is displayed
in Fig. 10. The training and validation accuracy
has the nearest value of 99.9% and training and
validation losses are below 0.01 has minimal
prediction errors. It confirms the ability of
CARTNet model for precise fault detection with
minimal over fitting. The confusion matrix is
indicated in Fig. 11. Here, the true negative value
is 29000 denoting no fault is properly predicted
while true positive has the value of 28915,
indicating correct fault prediction. False positives
are 72 showing incorrect fault alarm and false
negative is 0, denoting no missed faults. It
highlights the efficacy for real time intelligent
grid monitoring and fault management.

Fig. 12 presents the ROC curve that evaluates
the performance of the classifier model. The AUC
value is 0.99998 for both classes, denoting the
robustness in managing imbalanced grid
conditions. It precisely identify faults while
diminishing incorrect alarms, crucial for smart
grid stability and safety.

Fig. 13 depicts the analysis of accuracy for LSTM
[26], Stacked Auto Encoder (SAE) [27], Multi-
Layer Perceptron (MLP) [28] and CARTNet
approach. The LSTM attains the accuracy of
95.31% while the SAE enhances the performance
with 97.52% accuracy. Then, the MLP has the
92.91% accuracy and the developed approach has
the better value of 99.88%, thereby enhancing the
superior capability of CARTNet to capture
temporal dependencies for precise prediction of
fault.

Confusion Matrix
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20000
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Fig. 11. Confusion matrix.

An analysis of precision and recall for Logistic
Regression (LR) [16] and developed approach is
revealed in Fig. 14. The LR has the precision and
recall of 97.22% and 95.83%, denoting moderate
fault detection ability. errors.
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Receiver Operating Characteristic (ROC) Curve
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Fig. 12. ROC curve.

On the other hand, the CARTNet has the
precision and recall of 99.75% and 99.88%,

demonstrates its ability to deliver reliable, real-
time fault diagnosis with minimal
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Fig. 13. Analysis of accuracy.
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COMPARISON OF PRECISON AND RECALL (%)

_ =
w e e e e e = =
£ & O B8 S =

RECALL, SENSITIVITY (%)

2

LR PROPOSED

APPRAOCHES

| PRECISION ——RECALL |

Fig. 14. Analysis of precision and recall.

The comparison of computational time for
LSTM [26], SAE [27], MLP [28] and CARTNet
approach. The LSTM, SAE and MLP has the
computational time of 0.1656s, 0.1693s and
15454 s while the CARTNet has the
computational time of 0.151 s, there by balancing
both high performance and acceptable
computational ~ efficacy for smart grid
applications.
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Fig. 15. Analysis of computational time.

Table 2
Analysis of energy consumption and latency
Energy_ Latency
Approaches consumption (ms)
(kwh)
GNN-
transformer 8.2 150
fusion
Proposed 7.9 139
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The Table 2 compares the energy
consumption and latency among the GNN-
transformer fusion [8] and developed approach.
The GNN-transformer fusion has the energy
consumption of 8.2 kWh and latency of 150 ms.
Also, the CARTNet approach has the reduced
energy consumption of 7.9 kWh and latency of
139 ms, allowing faster, real-time fault detection
critical for grid stability.

IV. CONCLUSION

This research implements an innovation approach
for fault diagnosis on the power grid. The pre-
processing stage enhances the reliability and quality of
data, diminishing the influence of inconsistencies and
missing values. By efficiently incorporating chaotic
dynamics into the recurrent transformer structure,
CARTNet improves the model's capability to capture
difficult temporal dependencies and sudden variations
of power grid disturbances. The self-attention
mechanism further assures that both global and local
fault- features are proficiently extracted, allowing
exact fault classification even in the occurrence of
noisy or incomplete data. This research is applied in
Python software, demonstrates that the CARTNet
approach attains better diagnostic accuracy of 99.88%,
faster response time and better generalization under
diverse grid operating conditions. The CARTNet
approach not only advances the field of intelligent fault
diagnosis but also contributes towards developing
smarter and secure power grid infrastructures. Thus,
CARTNet serves as a promising solution for
improving situational awareness, operational efficacy
and security in modern power systems.
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