PROBLEMELE ENERGETICII REGIONALE 1(69)2026

Hybrid ARBS-Net Framework for Accurate Energy Forecasting in Smart
Grid-Driven Electric Mobility Environments
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Abstract. The main objective of this study are to develop an intelligent forecasting for Electric Vehicle
Charging Station (EVCS) and to significantly enhance the accuracy of energy consumption forecasting
in renewable integrated smart grid environments. These objectives are achieved through solving the
following tasks: implementing data preprocessing to handle missing values, remove outliers and
eliminate inconsistent observations for improving dataset reliability; performing feature engineering for
generating meaningful temporal and derived variables that strengthen model interpretability; and
carrying out detailed Exploratory Data Analysis (EDA) for extracting statistical trends, recognize
correlations and uncover hidden temporal dependencies in energy consuption behaviour. Structure on
the preparatory stages, a hybrid Deep Learning (DL) approach using a Radial Basis Spiking Net (ARBS-
Net) is developed by combining radial basis kernal (RBF) with temporal behavior of Spiking Neural
Networks (SNN), enhanced with attention mechanisms for capturing non-linear fluctuations and time
varying required pattern. The most important results obtained from Python based experiments highlight
enhancement in forcasting performance, with the proposed model achieving a Mean Squared Error
(MSE) of 0.1183, a Mean Absolute Error (MAE) of 0.2694, a Root Mean Squared Error (RMSE) of

0.3439, and an overall prediction accuracy reaching a R? score of 0.99. The significant of the results
lies in their ability to support predictive energy allocation, optimize load balancing strategies and
improve grid stability. By providing highly dependable demand forecasts for charging infrastructure,
the proposed framework contributes to the sustainable integration of electric mobility within future
smart energy systems.
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Structura hibrida ARBS-Net pentru previziuni precise ale consumului de energie in mediile de

electromobilitate bazate pe retele inteligente
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Rezumat. Scopul principal al acestei cercetari constd in dezvoltarea unui sistem inteligent de prognoza pentru
statiile de incarcare pentru vehicule electrice (EVCS) si In imbunatatirea semnificativa a preciziei de prognoza a
consumului energetic n cadrul retelelor inteligente integrate care utilizeaza surse regenerabile de energie. Aceste
obiective sunt atinse prin rezolvarea urmatoarelor sarcini: implementarea preprocesérii datelor pentru a gestiona
valorile lipsa, a elimina valorile aberante si a elimina observatiile inconsistente pentru Tmbunatatirea fiabilitatii
setului de date; efectuarea ingineriei caracteristicilor pentru generarea de variabile temporale si derivate
semnificative care consolideaza interpretabilitatea modelului; si efectuarea unei analize exploratorii de date (EDA)
detaliate pentru extragerea tendintelor statistice, recunoasterea corelatiilor si descoperirea dependentelor temporale
ascunse in comportamentul de consum de energie. In etapele pregititoare, este dezvoltati o abordare hibrida de
Deep Learning (DL) utilizdnd o retea Radial Basis Spiking Network (ARBS-Net) prin combinarea nucleului radial
(RBF) cu comportamentul temporal al retelelor neuronale Spiking Network (SNN), imbunatatitd cu mecanisme de
atentie pentru captarea fluctuatiilor neliniare si a modelului necesar variabil in timp. Cele mai importante rezultate
obtinute din experimentele bazate pe Python evidentiaza imbunatatirea performantei de prognoza, modelul propus
atingand o eroare medie patratici (MSE) de 0.1183, o eroare medie absolutd (MAE) de 0.2694, o eroare medie
patratica (RMSE) de 0.3439 si o precizie generald de predictie de 0.99. Semnificatia rezultatelor consta in
capacitatea lor de a sustine alocarea predictiva a energiei, de a optimiza strategiile de echilibrare a sarcinii si de a
imbunatati stabilitatea retelei.
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Cuvinte cheie: vehicule electrice, statii de incarcare pentru vehicule electrice, Deep Learning, preprocesare date,
inginerie caracteristici, analiza exploratorie a datelor si actea atenta de spiking radiala pe baza.

I'mopunnas crpykrypa ARBS-Net 1/ TO4UHOT0 IPOrHO3UPOBAHMS JHEPronoTpedaeHns B cpenax
371eKTPOMOOMIIBHOCTH, OCHOBAHHBIX HA HHTEJUIEKTYATbHBIX CETAX
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Jlakmman
MucTuryT unkenepuu u TexHonoruit Fopasapu (A), Pamxamynapu, Muaus
Tno6anbHelil yausepcutet Iogasapu, Pamxamysapu, nus

Annomayus. OcHOBHasI IIETb JAaHHOTO MCCIIEIOBAHUS 3aKJIFOYAETCs B pa3pab0TKe MHTEIIEKTYyaIbHOW CHCTEMBI
TIPOTHO3MPOBAHUS UIS 3apsSAHBIX cTaHOWH amekrpomodmneii (EVCS) u 3HaunTeNbHOM TOBBIIICHHH TOYHOCTH
MPOTHO3UPOBAHMUSA 3HEProNoOTpeONeHNss B WHTETPHPOBAHHBIX WHTEIUICKTYalbHBIX CETSIX, HCIOIb3YIOMINX
BO300HOBIISIEMBIC HCTOYHUKH SHEPTUH. DTH IIETH JOCTUTAIOTCS IyTEM PEIICHHMS CIEIYIOMNX 3a1ad: peann3arys
npeiBapuTeIbHON 00pabOTKM MAaHHBIX A 0O0paOOTKM OTCYTCTBYIOIIMX 3HAUCHWH, yJaJleHHs BBIOPOCOB W
YCTpaHCHUsA HECOTJIaCOBAHHBIX Ha6J'IIOI[eHHﬁ JUIA TTOBBIIICHUSA HAJAC)KHOCTH Ha6opa JAaHHBIX, BBIIIOJJHCHHUC
WHXXWUHUPUHIA TPU3HAKOB [JIA T'CHEpALMM 3HAYMMbBIX BPEMCHHBLIX W MNPOU3BOJAHBIX IEPEMEHHBIX, KOTOPLIC
YCWIMBAIOT WHTEPIPETHPYEMOCTh MOJENIH; M MPOBEJCHUE IMOJPOOHOTO HSKCILIOPATOPHOIO aHAIW3a JIaHHBIX
(EDA) nns u3Bie4eHHS CTaTUCTUYECKMX TEHICHLUH, paclo3HaBaHUS KOPPENSAIUH U BBISABICHHUS CKPBITBIX
BPEMEHHBIX 3aBUCHMOCTEH B IOBEICHMU 3HepromorpebneHus. Ha MOAroTOBHTENBHBIX 3Tamax pa3paboTaH
rHOpHUIHBIN Toaxo[ TiayOokoro odydernuns (DL) ¢ mcmonp3oBaHreM paananbHOM 0a3zoBoii cmaiik-cetu (ARBS-
Net) mytem oObenuHeHNs paguansHoro 6asosoro siapa (RBF) ¢ BpeMeHHBIM moBeneHHEM cliaiK-HEHPOHHBIX
cereil (SNN), ycOBEpIICHCTBOBAaHHBIX C ITOMOIIbIO MEXaHMU3MOB BHHUMAHHS AN YJIaBIMBAHWA HEIMHEHHBIX
KoneOaHni n TpeOyeMbIX BpEeMEHHBIX H3MeHeHHMH. Hambomee BakHBIC pe3yibTaThbl, IIOJNYUYCHHBIE B XOJE
9KCIIEPUMEHTOB Ha OCHOBE Python, momdepkuBaiOT yaydlIeHHE MPOTHO3HMPYIOIIEH CIIOCOOHOCTH, MPH 3TOM
npejaraemMas MOJIeNb JJOCTUraeT cpeanekBaaparuuHoit ommoku (MSE) 0.1183, cpenHeli abconroTHON OMIMOKH
(MAE) 0.2694, cpenuexBampatnuno#t omubku (RMSE) 0.3439 wu ofmielt TOYHOCTH OPOTHO3HPOBAHUS,
nmocruratorieid 0.99. 3HaYUMOCTh PE3yJIbTATOB 3aKIIIOYACTCS B UX CIIOCOOHOCTH

Knioueevie cnoea: >1eKTpOMOOWIM, 3apsiAHbIE CTaHLUUHM ISl DJIEKTpOMOOMieH, riiyookoe o0ydeHue,
npeaBapuTeabHas 00pabOTKa JaHHBIX, NPOSKTUPOBAHUE IPHU3HAKOB, pa3BEJOYHBI aHATU3 JaHHBIX |
BHUMATEJIbHAS paguaIbHO-0a31uCHasI UMITYJIbCHAS CETh.

I. INTRODUCTION growing EVs propulsion increases the load curve
Emissions from fossil-fuel-powered vehicles  which in turn create additional stress on
are a major cause of air pollution and have transformer and the entire distribution grid [3]. To
harmful effects on the environment. Meanwhile,  mitigate this issue, RES based EVCS have been
as oil reserves continue to dwindle and extraction  developed. These EVCS provides clean energy,
becomes increasingly difficult, the need for  while also avoiding transmission costs by
alternative energy sources in transportation is  generating power locally. However, with the
growing. Therefore, EVs produce zero emissions  influx of EVs into the energy sector, it becomes
and are powered using RE, contributing to cleaner  essential for Charging Station (CS) to effectively
and sustainable energy transportation [1]. Today = manage the simultaneous vehicle charging and
there are more EVs powered by Renewable  power dispatch [4]. Moreover, the conventional
Energy System (RES) such as solar Photovoltaic ~ power grid is composed of several interconnected
(PV) and wind are supporting the goal of peaking  components such as transformers, alternators,
energy independence. Additionally, EVs have  transmission lines and diverse electrical loads to
lower maintenance and fuel costs compared to  deliver electricity from source of production to
traditional vehicles, making them financially  the consumer. Though, the process is much more
attractive. Due to these environmental and  complicated and the broader demand from EVs
financial benefits, the demand for EVs is rapidly ~ charging complicates its operation, thus the
increasing [2]. However, large-scale adoption of  distribution grid requires robust and reliable
EVs creates considerable pressure on the  management systems to operate effectively and
electrical grid. As the demand for charging EVs  reliably [5-6]. Fig. 1 illustrates graphical
increases, a large number of vehicles on the road  representation of energy consumption in EVCS.
causing stress to the distribution network. The
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Fig. 1. Graphical diagram for EVCS energy consumption.

Consequently, the smart grid uses advanced
technology to improve the efficiency of the power
system. By integrating enhanced sensors, smart
meters, and analytic software, it is collected and
analyzed comprehensive data on EV energy
consumption patterns. This capability enables
more effective energy management, demand
forecasting and load balancing [7]. A smart grid
operates as a two-way communication power
supply system between utilities and consumers,
allowing electricity to be monitored and
controlled more efficiently. Through this
intelligent coordination, the smart grid aids
address the challenges posed by large scale EVCS
while ensuring sustainable power delivery [8].
The smart grid encompasses many electrical
systems that utilize significant energy, including

building Heating, Ventilation, and Air
Conditioning (HVAC) systems, and Home
Energy Management Systems (HEMS). It

addresses the power supply issues by utilizing
advanced communications technologies.
Essentially, it consists of an intelligent network of
interconnected devices and systems, often
through wireless technology [9]. As part of this
development of smart grid technologies, Internet
of Things (10T) generates and processes data from
the devices in real time to support their decision-
making process, living standard, and enhance
sustainability. With the increasing adoption of
EVs, smart grid technologies have been more
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essential, particularly in optimizing charging
schedules to minimize the overall operating cost
[10]. Along with the increasing number of EVCS
in a smart grid, there is an increase opportunity for
researchers to operate the CS effectively. As a
result, the smart grid is able to manage EVs that
arrive in a high-energy load to maintain reliable
power supply and stable operation. Furthermore,
the energy consumption behavior of EVs is
dynamic and influenced by several factors
including  charging  requirements, travel
destination, and weather conditions [11]. The
rapid acceleration of EVs has created a massive
demand for reliable charging infrastructure.
However, the operation and maintenance of
EVCS consumes significant amounts of energy
and led to operating costs. Thus, reliable power
consumption forecasting is essential for the
efficient utilization of CS and for reducing
operating expenses [12].

Therefore, the EV charging consumption is
examined with respect to two approaches: test set-
based and analysis-based charging demand
forecasting methods. In a test set-based
approaches, which includes trial-and-error,
prototype, or equipment-based methods are often
expensive, time consuming and unsuitable for
large EV charging analysis. Comparatively,
analysis-based approaches employ Machine
Learning (ML) and DL models, which led to more
accurate predictive representation of EV energy
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consumption [13-14]. The ML models such as
Random Forest (RF), XGBoost, Support Vector
Regression (SVR), and Multi-Layer Perceptron
(MLP) have been used to forecast EVCS energy
demand by integrating historical charging data
with weather variables. RF and XGBoost showed
long term prediction, making practical for grid
management and scheduling. However, its relied
on short term datasets and lacked key factors such
as vehicle type, public events, and environmental
condition, limiting scalability. SVR and MLP
achieved the best predictive performance, though
weather inputs reduced accuracy in certain
conditions [15-16]. The DL methods like
Recurrent Neural Networks (RNN), and Gated
Recurrent Unit (GRU) models to forecast energy
consumption in EVCS. These models captured
the charging demand patterns effectively for
demand-supply balance and infrastructure
planning. Nevertheless, the model’s constrained
by small datasets and high computational
resource, reducing their feasibility for large-scale
real-time applications [17].

A. Literature survey

Munseok Chang et al (2021) [18] have
developed a Long-Short Term Memory (LSTM)-
based forecasting model to predict aggregated
fast-charging power demand across several
EVCS. This model accounted for time series data
with irregular and varying charging behaviours,
making demand estimation useful for both grid
planning and operational reliability. However, the
model is limited to datasets from a single region,
making it difficult of generalize results to
different charging infrastructures. Yining Hua et
al (2022) [19] have implemented a Fine-grained
RNN (F-RNN) classifier for predicting the energy
consumption by EVs. It improves predictions
through segmenting trajectory data, incorporating
environmental ~ factors, and transferring
knowledge from ICE/HEV datasets. Nonetheless,
it depends heavily on pre-trained non-EV data and
involves complex pre-processing which affect
adaption to varying real driving conditions. Dan
Zhou et al (2022) [20] have presented a day-
ahead EVCS forecasting with the integration of
LSTM with a Bayesian DL (BDL) approach. The
approach incorporates uncertainty into prediction
using binary probability theory and variational
inference, which improved prediction accuracy
and reliability. Nevertheless, the model required
high computation cost and requires extensive
data, which limit it’s real-world applications.
Danlan Wu et al (2021) [21] have developed a
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Generative  Adversarial  Network  (GAN)-
enhanced ensemble model for predicting energy
consumption in large commercial buildings. The
method achieves greater predictive robustness,
resulting in more affluent, accurate training
datasets. However, evaluate on a single dataset
with limited set of GAN variants and ensemble
methods, its generalizability to broader
applications is limited. Faisal Mohammad et al
(2023) [22] have introduced Convolutional
LSTM (ConvLSTM) and Bidirectional
ConvLSTM  (BiConvLSTM)-based encoder-
decoder structures for forecasting energy demand
in EVCS. The approach enabled spatiotemporal
representations from multi-location datasets and
improved forecasting accuracy for intelligent
energy management. However, the model
required extensive computational resources and
lacked with larger multivariate datasets, which
limits their scalability in various real-world
contexts.

Existing methods have several limitations in
accurately forecasting energy consumption,
therefore in this work implements the ARBS-Net
classifier to overcome theses challenges and
improve prediction performance. The
contributions of the work are,

Data preprocessing stage involves handling

missing values and treating outliers to data

quality, reduces inconsistence and reliability
of energy consumption forecasting.

«» Performed feature engineering by extracting
date and creating new features to capture
pattern in energy consumption, enhancing
model interpretability.

% Conducted EDA using time series and
statistical analysis methods to identify
patterns, trends, and anomalies in energy
consumption.

«» Implemented an ARBS-Net to forecast
accurate energy consumption, achieving
lower error values, and improved temporal
pattern recognition, thereby delivering
superior forecasting performance.

I1. PROPOSED SYSTEM DESCRIPTION

In the ARBS-Net based energy consumption
system, data is gathered from dataset such as, PV
system specifications, operational measurements
from EVCS, microgrid load data, control
strategies, and target outcomes as shown in Fig. 2.
Before model development, the raw data pre-
processed through handling missing values and
outlier treatment. Handling missing values is
necessary for addressing incomplete recorded

R/
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data, which disrupts the learning process, while
outlier treatment enhances the dataset by
improving consistency, reducing noise. Once the
data is cleaned, feature engineering is carried out

time are derived, along with additional context-
based features that find hidden patterns. EDA is
then performed using time-based and statistical
data analysis methods to identify load trends,

to enhance the dataset by generating new  energy consumption, usage pattern and
variables. Temporal features such as dates and  correlation between variables.
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Fig. 2. Proposed block for DL based energy consumption forecasting.

The processed data is used to train the ARBS-
Net model, to accurately forecast energy
consumption and capture residential EV charging
behaviour by combining RBF, SNN and attention
mechanism. The predicted energy consumption
patterns are analyzed to support demand
forecasting, load scheduling and efficient
utilization of renewable resources.

I11. PROPOSED METHODOLOGY

A. Data Preprocessing

The first step in the experiment is data pre-
processing, as time series data often contain
missing values and duplicates during data
collection. Data pre-processing is the process of
identifying, and correcting incomplete, inaccurate
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or inconsistent records by either replacing,
correcting, or deleting the data parts of the data.
In this work data cleaning involves, handling
missing values and outlier treatment.

Handling Missing Values

Missing values in DL are absent attributes in a
dataset, often caused by data collection, faulty
sensor readings, and sensor failure in CS. The
voltage level, current, and power readings
sometimes be missing. Thus, the missing value
algorithm applied to check whether missing
values are correlated with any observed variables

in the dataset. Formally, let X =(a,b)where a
stands observed value and b stands missing value
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in X,and let Y be a random variable. The
missingness mechanism characterized as:

P(Y|X,9) 1)

where J represents the missing aspect of the
data. Following this formulation, consider three
common mechanisms for handling missing
values:

1. Missing Completely at Random (MCAR):
P(YIX,2)=P(Y,Q) (2)

The missingness of the values is independent
of the observed values and the unobserved values.
Assuming a CS fails to record voltage readings
due to a temporary communication failure. Such
missed readings are classified as MCAR. MCAR
values are typically handled by random deletion
and simple imputation.

2. Missing at Random (MAR):

P(YIX.2)=P(Y,|9) ©)

The missing values typically depends only on
subset of the observed variables. If power
consumption data is missing during fast-charging
sessions, the pattern of missing values is related
to the variable charging type. MAR often be
addressed using regression-based or covariance-
based imputation techniques.

3. Missing Not at Random (MNAR):

P(Y|X,®) =P(Y |a,b,Q) 4

In this scenario, when missing values depend
on the missing data itself or on unobserved
covariates, the missing values is classified as
MNAR. If high current flow values are
systematically missing due to sensor limitations,
the missing values are considered MNAR.
Addressing MNAR typically require advanced
DL based methods to model unobserved
associations.

Missing values in the EV charging dataset are
addressed using a combination of statistical
imputation and predictive imputation methods,
based on whether the missing data are MCAR,
MAR, or MNAR.

These various methods utilized to address
missing values allow for a complete and reliable
dataset, which ultimately improve accuracy of
energy forecasting and optimization within smart
grid integrated EVCS.
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Outlier Treatment

Outlier handling is essential to ensure the
reliability of data. Outliers occur due to abnormal
readings of voltage, current, power flow, and
charging demand, which result from sensor
malfunction, unusual load behaviour, and clerical
error leading to erroneous entry of values. Outlier
rejection, as part of the data cleaning process,
eliminates or adjust abnormal readings to
maintain consistency in system parameters.
Conversely, outlier detection captures significant
behaviours, such as unusual charging demand,
irregular load fluctuation, or atypical RE
generation which indicate potential grid stress and
system fault. Proper handling of outliers improves
the quality of economic and reliability
assessment, and supports the analysis of optimal
charging approach with EV’s and establishing
grid stability.

B. Feature Engineering

This study applies feature engineering to
enhance the utility of the proposed EVCS
analysis. The raw dataset is refined by extracting
date-related features, including day, month, and
time of charging, which capture time-dependent
variations in charging demand and grid behavior.
These time features allow for the model to
recognize seasonal cycles, charging demands
during peak and off-peak charging pattern, and
different sized variations in RE availabilities. In
addition to date-based extraction, new features are
created from existing variables to identify
relationships that less apparent in the dataset.
Thus, the model is specifically using indices like
the power-to-current ratio, voltage fluctuation
index, and energy efficiency ratio to better
represent of CS performance. By embedding
domain knowledge through these new features,
the dataset more accurately reflects both the
operational efficiency and reliability of the
charging network. The integration of both new
temporal and engineered features added depth to
the learning process of the classification models,
which increased accuracy and interpretability.
With this approach, it ensured that the proposed
system utilizes raw operational parameters, while
also  recognizing higher-level  behaviours,
enabling more effective analysis of EV-grid
interactions.

C. Exploratory Data Analysis

The EV charging dataset using EDA to
discover hidden features, usage trends and
relationships in energy demand. Statistical
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analysis techniques including histograms, box
plots and correlation plots are employed to
examine the distribution of charging sessions,
energy and charging time. The analysis is able to
display differences in demand for various time
intervals and revealed a dependency on State of
Charge (SOC), time of connection and consumed
energy. Subsequently, a time-series analysis
captured the time-based features of charging
behavior. This analysis considered as the
characteristics of trend, seasonality, cyclicity, and
irregularity representing the long-term growth in
demand, periodic cycles of charging, medium
term variations, and shorter-term fluctuations.
These insights support accurate modeling,
forecasting of charging demand while also
facilitating higher integration of renewable
energy sources.

D. Attentive Radial Basis Spiking Net (ARBS-
Net)

The ARBS-Net is a hybrid DL model which
combines the nonlinear generalization capacity of
RBF kernels, SNNs, and the feature refinement
capability of attention methods to accurately
model EV charging demand and the variability in
RE generation. The RBF kernel is the first layer
to capture nonlinear dependencies in the input
features. The RBF kernel is defined as:

d(x,xy

K(xx)=e 2o (5)

Where d(x,x')is the Euclidean distance
between feature vectors xand x":

d(x,x)=x-x fzi:(xi —xi')2

In this expression, o is a parameter that
controls the level of nonlinearity, with smaller
values yielding smoother mappings and larger
values enabling the model to capture more
complicated variations in demand. The RBF is

(6)

expressed in terms of the parameter y =

262

resulting in the equivalent expression,

K(xX)= g (7

The RBF mapping embodies a nonlinear
transformation of the EV charging features,
allowing for more effective representation of the
flux of demand before transition into a network of
spiking neurons. In order to represent fluctuation,
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the spiking component employs a Leaky
Integrate-and-Fire (LIF) neuron model, which
provides a balance between biological principles
and computational efficiency. As part of that
transformation, the pre-synaptic input represents
the charging demand or renewable energy
fluctuation which is predictable to the LIF neuron
as a weighted signal. The membrane potential
evolves over time and is based on the existing
input and historical charging activity. The scaling
of synaptic weights determines the significance of
events and the membrane time constant controls
the depth of memory. The discrete-time LIF
neuron is represented, as follows,

1
Ht :Vt—l + ; I:_ (Vt—l _Vreset ) + Xt :I (8)

Where X, refers to the input charging demand

or renewable fluctuation at time t, V, , is the

membrane potential corresponding to
accumulated charging state, V__ is the reset

reset
potential, and 7 is the membrane time constant
controlling the loss of previous load influences.
The synaptic weight determines the magnitude of
each charging event, while the time constant
control the memory length, allowing the model to
flexibly capture short term deviations and long-
term variation in EV demand and renewable
supply.

In ARBS-Net, temporal feature learning is
further enhanced by incorporating a Temporal
Attention (TA) module that emphasize the most
important charging events over time.

The aim of this module is to predict the
salience of a frame in the spiking neural sequence,
which utilize the temporal statistics of the
distribution at the selected frame while also
integrating contextual information from adjacent
frames.

For the spatial input tensor of the n—th layer
at time point t, denoted X, , , € R™®“, where
C is the size of the channel, the TA module
executes a squeeze operation to obtain a statistical

descriptor of the distribution of events. To obtain
the statistical vector at time frame t, consider,

C L

ZZixmme ©)

k=1 i=1 j=1

n-1 1

' T LxBxC
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Fig. 3. Structure of ABRS-Net.
This accurately represents the total activity  kernels, spiking dynamic and frame level

level of EV demand or renewable generation at
that moment. In the excitation step, the statistical

vector s, , is given to a two-layer fully connected

network that finds correlations over frames,
thereby producing TA scores. This operation is

defined as,
o (W2n5 (Wlnsn—l ))
f (0 (a8 (Wys,1))~ )

Here § and o denote the ReLU and sigmoid
functions  respectively, W, € R"*" and

W, eR"™™ are trainable weight matrices, r

n+l —

(10)

controls model complexity, f () is the Heaviside

step function, and d,, is the TA threshold. The

final input at timestep t is achieved by applying
the TA score to the input tensor as follows,

Xt,n—l = dtn_l ) Xt,n—l (11)

Its amplify frames related to significant
charging volatility or renewable generation
variations. Then, the dynamics of the TA-LIF
layer’s membrane potential are represented as
follows,

U, = Ht,l’n +4 (Wn7 )Zt,n—l) (12)

t,n

Where H,_, ., represents historical membrane

potential and g(-)is the weighted synaptic

transformation of the attended input. As a result
of combining nonlinear mapping from the RBF
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refinement using TA, ARBS-Net is able to learn
nonlinearities, temporal dependencies and salient
patterns related to EV charging demand and
renewable generation integration. The ABRS-Net
structure as displays in Fig. 3. This hybrid
architecture serves as a robust and biologically-
inspired computational framework that leads to
improvement in forecasting accuracy, robustness
against volatility and increased interpretability
within renewable-based EVCS.

IV. RESULT AND DISCUSSION

The developed work ABRS-Net to forecast
energy consumption in EVCS. In this work,
python software used to evaluate the model’s
performance through MSE. RMSE, MAE and
R?score verifying its reliability in predicting
charging demand. The EV Charging Grid
Optimization Dataset acquired from Kaggle that
has 1000 records containing relevant operational
and infrastructure parameters of EVCS. The
dataset includes station ID, station location, EV
station charging type, number of chargers,
voltage, current, power consumed, power loss,
voltage variation, and EV identifiers. These
parameters produce information on the technical
and operational characteristics of the EV charging
infrastructure and are useful for analyzing grid
performance, charging efficiency, and energy
utilization. The dataset is also useful for modeling
and optimization as it contains variability for the
various electrical parameters such as voltage,
current, and power consumption. It also includes
power loss and voltage variations to determine the
reliability and stability of the grid based on
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variable charge demand. The data is divided into
training and testing data, with 80% of the data as
training data, and 20% of the data as the testing
and validating data. This dataset has structured

numerical and categorical data making it useful
for DL studies to improve EVCS efficiency and
grid stability.
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Fig. 4. Time series analysis of EV charging
parameters.

Fig. 4 displays time-series analysis of smart
grid-integrated EV charging parameter. It
presents four elements is evaluated from 2024-01-
01 to 2024-01-11. Predicted Power Demand:
estimates the required level of load across each
time stamp and Charging Cost shows the
changing costs associated with charging over
time. Power Consumed is the actual energy from
the grid when charging any EVs, and Grid
Stability Score indicates the grid’s strength and

balance are sustained under different load
conditions.
Henceforth, understanding the

interconnections and relationships between EV
charging demands, price volatility, energy
consumption, and grid stability will aid in
effectively allocating energy in a smart grid-
connected world.
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CHARGING TYPE DISTRIBUTION
V2G

N.7%

Fast 35.2%
331%
- Conventional

Fig. 5. Distribution pf charging types in the
dataset.

Fig. 5 shows distribution of charging types in
the dataset delivers the percentage of fast
charging has 35.2%, conventional charging has
33.1%, and Vehicle-to-Grid (V2G) charging has
31.7%. the distribution charging types highlights
a balanced representation of charging modes
allowing for a comparative evaluation of each
charging type in terms of energy demand and grid
performance.
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BATTERY CAPACITY VS CHARGING TIME
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Fig. 6. Battery capacity vs charging time.

Fig. 6 shows the relationship between battery
capacity and charging time for EVs, with the
bubble size and colour indicate charging power. It
illustrates as battery capacity increases charging
times also tend to widely difference, due to the
varying levels of charging power across the
vehicles. It highlights the interaction between
battery size, charging time, and charging power
which is crucial connection for optimizing
charging strategies and grid management.

DISTRIBUTION OF VOLTAGE STABILITY CATEGORY
404

400
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350

245

Excellent Moderate

Voltage Stability Category
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Fig. 7. Distribution of voltage stability category.

Fig. 7 represents distribution of voltage
stability categories in the smart grid system,
which shows the number of categories classified
as Excellent (351), Moderate (404), and Poor
(245). The results suggest that most cases are
moderate stability, substantial number of cases
with excellent voltage, while relatively few are
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categorized as poor stability, which demonstrates
the variability of stability conditions with the
integration of EVs.

AVERAGE POWER CONSUMED VS POWER LOSS
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Fig. 8. Average Power consumed vs power loss.

Fig. 8 depicts Average power consumption
and power loss illustrates that the system reports
average power consumption of 12.79 units versus
power loss of 2.51 units. This shows that a
significant portion of the supplied energy is
successfully utilized, with only a minor amount
energy as losses. The relatively minimal loss
range demonstrates the system's efficacy in
handling EV charging and grid operation.

DISTRIBUTION OF LOCATIONS

343
-6
_u1

0 50

Urban

1on

Suburban

Locat

Rural

100

150 200

Count

250 300 350

Fig. 9. Distribution of locations.

Fig. 9 depicts the distribution of CS,
comparing their presence in urban (343),
suburban (336), and rural (321) areas. The results
show a rather equal deployment across regions,
with urban areas having a slightly larger
concentration.  This  balanced  distribution
promotes greater accessibility and ensures that
EV adoption is unhindered to specific regions.



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

station_id 0.01 -0.02

location 0.05 0.04

charging_type 0.01

num_chargers -0.02 -0.04

woltage_level 002 -0.03 0.04

current_flow -0.01 007 005 007

power_consumed -0.01 0.07 -0.05 0.08

power_loss -0.01 -0.01 0.02 -0.03

voltage_fluctuation -0.00 -0.03 -0.01 0.06

0.02 000 O.

(=]

ev_id 6 -0.02

station_id
location
charging_type
num_chargers

CORRELATION HEATMAP

0.02

.03 0.07

0.04

0.04

0.03

0.00

0.04

voltage_level

1.0

0.01 0.01 -0.01 -0.00 0.02

0.07 -0.01 0.03 0.00

08

0.05 0.05 002 -0.01 006

0.07 0.08 -0.03 0.06 -0.02

0.6

0.04 003 000 004

-0.08

-04

-02

-00

power_loss

hel
@
E
=1
12}
c
g
@
L
]
=
5]
=

voltage_fluctuation

Fig. 10. Correlation heatmap of dataset features.

The heatmap in the Fig. 10 depicts the
interrelationships between features including
location, charging type, number of chargers,
voltage level, current flow, power consumption,
power loss, and voltage variations. Furthermore,
the correlation coefficients between most features
are low, demonstrating that non-electrical features

TRAIN AND TEST DISTRIBUTION

Test

20.0%

80.0%

Train

Fig. 12. Train and Test Distribution.

Fig. 12 displays data splitting technique used
for developing models, with 80% of the dataset
allocated for training and 20% for testing. The
splitting process delivers sufficient information
for learning while also preserving a strong
assessment dataset. The distribution improves
model generalization and delivers an accurate
evaluation of performance.
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remain linearly dependent on grid-related
variables. The relationship between current flow
and power consumption showed the largest
positive association, which is probably due to
their direct impact on the charging process and
overall energy demand.

COMPARISON OF ERROR METRICS
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Fig. 13. Comparison of error metrics.

Fig. 13 illustrates an assessment of error
metrics including the MSE, MAE, and RMSE, to
evaluate the proposed model predictive accuracy.
The MSE value of 0.1183 indicates better
generalization properties, the MAE is 0.2694,
which signifies the average absolute difference
between predicted value and actual value and the
RMSE is 0.3439, it’s more sensitive to deviation.
Thus, the comparative assessment indicates that
the model persists in minimizing error across a
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variety of performance metrics, demonstrating its
dependability and accuracy.
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Fig. 14. Actual vs. predicted values plot.

Fig. 14 shows the model's performance by
comparing actual dataset values to predicted
results. The precise alignment of the actual and
predicted curves demonstrates the model's
stability for capturing dynamic variations in
charging-related factors. The minimum difference
between the two series shows that the proposed
structure delivers accurate predictions for EV
charging system analysis.

A. Comparison
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Fig. 15. Comparison of MAE.

Fig. 15 illustrates the MAE performance of
various DL methods for energy consumption
forecasting. The comparison involves F-RNN
[19] has 4.557, LSTM-BDL [20] has 3.36, GAN
[21] has 1.67 and the proposed ARBS-NET has
0.2694, its shows the proposed method achieves
the lowest MAE, thus demonstrating superior
prediction accuracy compared to other listed DL
methods.
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Fig. 16. Comparison of MSE.

Table 1
Comparison of RMSE
DL techniques RMSE
F-RNN [19] 6.503
LSTM-BDL [20] 5.033
GAN [21] 4.83
ConvLSTM [22] 0.71
PROPOSED 0.3439

Fig. 16 illustrates the MSE value of various
DL methods for energy consumption forecasting.
The recorded MSE values are F-RNN [19]
(4.228), ConvLSTM [22] (0.878) and the
proposed ARBS-NET (0.1183), its shows that the
proposed method is lowest MSE, highlighting its
effectiveness in minimizing prediction error
compared to other listed DL methods.

Table 1 presents RMSE values for various DL
methods such as F-RNN, LSTM-BDL, GAN,
ConvLSTM and proposed model. Among these
techniques, proposed method achieves lowest
RMSE, ensuring its superior predictive
performance and robustness. Lower RMSE,
MAE, and MSE values indicates that the model is
more accurate and reliable. Reducing error rates
illustrate the model's ability to accurately reflect
actual energy usage patterns. This contains exact
forecasting, facilitating the efficient operation,
planning, and energy management of EVCS.

V. CONCLUSION

The proposed ABRS-Net based system
effectively tackle the difficulty of predicting
energy consumption in smart grid integrated
EVCS. By combining RBF, SNN and attention
mechanism, the model captures the temporal
pattern and non-linear behaviour of EV charging
demand. The extensive data preprocessing,
feature engineering and EDA stages effectively
achieves high quality inputs, improving model
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dependability and interpretability. From the
python software, the proposed ARS-Net
outperform traditional DL methods in terms of
MSE of 0.1183, MAE of 0.2694, RMSE of 0.3439

and R?score of 0.99. The proposed system aids
in pro-active energy distribution and efficient load
balancing, as well as grid stability, therefore
allowing for sustainable RE integration and
facilitating optimal performance of EV charging
infrastructure. Furthermore, this work illustrates
the intelligent forecasting via ARBS-net enhance
energy  management  methods,  decrease
operational losses, and contribute to a reliable,
globally resilient, efficient EV charging systems
in future smart grids.
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