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Abstract. The main objective of this study are to develop an intelligent forecasting for Electric Vehicle 

Charging Station (EVCS) and to significantly enhance the accuracy of energy consumption forecasting 

in renewable integrated smart grid environments. These objectives are achieved through solving the 

following tasks: implementing data preprocessing to handle missing values, remove outliers and 

eliminate inconsistent observations for improving dataset reliability; performing feature engineering for  

generating meaningful temporal and derived variables that strengthen model interpretability; and 

carrying out detailed Exploratory Data Analysis (EDA) for extracting statistical trends, recognize 

correlations and uncover hidden temporal dependencies in energy consuption behaviour. Structure on 

the preparatory stages, a hybrid Deep Learning (DL) approach using a Radial Basis Spiking Net (ARBS-

Net) is developed by combining radial basis kernal (RBF) with temporal behavior of Spiking Neural 

Networks (SNN), enhanced with attention mechanisms for capturing non-linear fluctuations and time 

varying required pattern. The most important results obtained from Python based experiments highlight 

enhancement in forcasting performance, with the proposed model achieving a Mean Squared Error 

(MSE) of 0.1183, a Mean Absolute Error (MAE) of 0.2694, a Root Mean Squared Error (RMSE) of 

0.3439, and an overall prediction accuracy reaching a
2  R score  of 0.99. The significant of the results 

lies in their ability to support predictive energy allocation, optimize load balancing strategies and 

improve grid stability. By providing highly dependable demand forecasts for charging infrastructure, 

the proposed framework contributes to the sustainable integration of electric mobility within future 

smart energy systems.
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Rezumat. Scopul principal al acestei cercetări constă în dezvoltarea unui sistem inteligent de prognoză pentru 

stațiile de încărcare pentru vehicule electrice (EVCS) și în îmbunătățirea semnificativă a preciziei de prognoză a 

consumului energetic în cadrul rețelelor inteligente integrate care utilizează surse regenerabile de energie. Aceste 

obiective sunt atinse prin rezolvarea următoarelor sarcini: implementarea preprocesării datelor pentru a gestiona 

valorile lipsă, a elimina valorile aberante și a elimina observațiile inconsistente pentru îmbunătățirea fiabilității 

setului de date; efectuarea ingineriei caracteristicilor pentru generarea de variabile temporale și derivate 

semnificative care consolidează interpretabilitatea modelului; și efectuarea unei analize exploratorii de date (EDA) 

detaliate pentru extragerea tendințelor statistice, recunoașterea corelațiilor și descoperirea dependențelor temporale 

ascunse în comportamentul de consum de energie. În etapele pregătitoare, este dezvoltată o abordare hibridă de 

Deep Learning (DL) utilizând o rețea Radial Basis Spiking Network (ARBS-Net) prin combinarea nucleului radial 

(RBF) cu comportamentul temporal al rețelelor neuronale Spiking Network (SNN), îmbunătățită cu mecanisme de 

atenție pentru captarea fluctuațiilor neliniare și a modelului necesar variabil în timp. Cele mai importante rezultate 

obținute din experimentele bazate pe Python evidențiază îmbunătățirea performanței de prognoză, modelul propus 

atingând o eroare medie pătratică (MSE) de 0.1183, o eroare medie absolută (MAE) de 0.2694, o eroare medie 

pătratică (RMSE) de 0.3439 și o precizie generală de predicție de 0.99. Semnificația rezultatelor constă în 

capacitatea lor de a susține alocarea predictivă a energiei, de a optimiza strategiile de echilibrare a sarcinii și de a 

îmbunătăți stabilitatea rețelei. 
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inginerie caracteristici, analiză exploratorie a datelor și aețea atentă de spiking radială pe bază.
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Аннотация. Основная цель данного исследования заключается в разработке интеллектуальной системы 

прогнозирования для зарядных станций электромобилей (EVCS) и значительном повышении точности 

прогнозирования энергопотребления в интегрированных интеллектуальных сетях, использующих 

возобновляемые источники энергии. Эти цели достигаются путем решения следующих задач: реализация 

предварительной обработки данных для обработки отсутствующих значений, удаления выбросов и 

устранения несогласованных наблюдений для повышения надежности набора данных; выполнение 

инжиниринга признаков для генерации значимых временных и производных переменных, которые 

усиливают интерпретируемость модели; и проведение подробного эксплораторного анализа данных 

(EDA) для извлечения статистических тенденций, распознавания корреляций и выявления скрытых 

временных зависимостей в поведении энергопотребления. На подготовительных этапах разработан 

гибридный подход глубокого обучения (DL) с использованием радиальной базовой спайк-сети (ARBS-

Net) путем объединения радиального базового ядра (RBF) с временным поведением спайк-нейронных 

сетей (SNN), усовершенствованных с помощью механизмов внимания для улавливания нелинейных 

колебаний и требуемых временных изменений. Наиболее важные результаты, полученные в ходе 

экспериментов на основе Python, подчеркивают улучшение прогнозирующей способности, при этом 

предлагаемая модель достигает среднеквадратичной ошибки (MSE) 0.1183, средней абсолютной ошибки 

(MAE) 0.2694, среднеквадратичной ошибки (RMSE) 0.3439 и общей точности прогнозирования, 

достигающей 0.99. Значимость результатов заключается в их способности

Ключевые слова: электромобили, зарядные станции для электромобилей, глубокое обучение, 

предварительная обработка данных, проектирование признаков, разведочный анализ данных и 

внимательная радиально-базисная импульсная сеть.

I. INTRODUCTION

Emissions from fossil-fuel-powered vehicles 

are a major cause of air pollution and have

harmful effects on the environment. Meanwhile, 

as oil reserves continue to dwindle and extraction 

becomes increasingly difficult, the need for 

alternative energy sources in transportation is 

growing. Therefore, EVs produce zero emissions 

and are powered using RE, contributing to cleaner 

and sustainable energy transportation [1]. Today 

there are more EVs powered by Renewable 

Energy System (RES) such as solar Photovoltaic 

(PV) and wind are supporting the goal of peaking 

energy independence. Additionally, EVs have 

lower maintenance and fuel costs compared to 

traditional vehicles, making them financially 

attractive. Due to these environmental and 

financial benefits, the demand for EVs is rapidly 

increasing [2]. However, large-scale adoption of 

EVs creates considerable pressure on the 

electrical grid. As the demand for charging EVs 

increases, a large number of vehicles on the road 

causing stress to the distribution network. The 

growing EVs propulsion increases the load curve 

which in turn create additional stress on 

transformer and the entire distribution grid [3]. To

mitigate this issue, RES based EVCS have been 

developed. These EVCS provides clean energy, 

while also avoiding transmission costs by 

generating power locally. However, with the 

influx of EVs into the energy sector, it becomes 

essential for Charging Station (CS) to effectively 

manage the simultaneous vehicle charging and 

power dispatch [4]. Moreover, the conventional 

power grid is composed of several interconnected 

components such as transformers, alternators, 

transmission lines and diverse electrical loads to 

deliver electricity from source of production to 

the consumer. Though, the process is much more 

complicated and the broader demand from EVs

charging complicates its operation, thus the 

distribution grid requires robust and reliable 

management systems to operate effectively and 

reliably [5-6]. Fig. 1 illustrates graphical 

representation of energy consumption in EVCS.
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Fig. 1. Graphical diagram for EVCS energy consumption.

Consequently, the smart grid uses advanced 

technology to improve the efficiency of the power 

system. By integrating enhanced sensors, smart 

meters, and analytic software, it is collected and 

analyzed comprehensive data on EV energy 

consumption patterns. This capability enables 

more effective energy management, demand 

forecasting and load balancing [7]. A smart grid 

operates as a two-way communication power 

supply system between utilities and consumers,

allowing electricity to be monitored and 

controlled more efficiently. Through this 

intelligent coordination, the smart grid aids 

address the challenges posed by large scale EVCS 

while ensuring sustainable power delivery [8].

The smart grid encompasses many electrical 

systems that utilize significant energy, including 

building Heating, Ventilation, and Air 

Conditioning (HVAC) systems, and Home 

Energy Management Systems (HEMS). It 

addresses the power supply issues by utilizing 

advanced communications technologies. 

Essentially, it consists of an intelligent network of 

interconnected devices and systems, often 

through wireless technology [9]. As part of this

development of smart grid technologies, Internet 

of Things (IoT) generates and processes data from 

the devices in real time to support their decision-

making process, living standard, and enhance 

sustainability. With the increasing adoption of 

EVs, smart grid technologies have been more 

essential, particularly in optimizing charging 

schedules to minimize the overall operating cost

[10]. Along with the increasing number of EVCS

in a smart grid, there is an increase opportunity for 

researchers to operate the CS effectively. As a 

result, the smart grid is able to manage EVs that 

arrive in a high-energy load to maintain reliable 

power supply and stable operation. Furthermore, 

the energy consumption behavior of EVs is 

dynamic and influenced by several factors

including charging requirements, travel 

destination, and weather conditions [11]. The 

rapid acceleration of EVs has created a massive 

demand for reliable charging infrastructure. 

However, the operation and maintenance of 

EVCS consumes significant amounts of energy 

and led to operating costs. Thus, reliable power 

consumption forecasting is essential for the 

efficient utilization of CS and for reducing 

operating expenses [12]. 

Therefore, the EV charging consumption is 

examined with respect to two approaches: test set-

based and analysis-based charging demand 

forecasting methods. In a test set-based

approaches, which includes trial-and-error, 

prototype, or equipment-based methods are often 

expensive, time consuming and unsuitable for 

large EV charging analysis. Comparatively, 

analysis-based approaches employ Machine 

Learning (ML) and DL models, which led to more 

accurate predictive representation of EV energy 
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consumption [13-14]. The ML models such as 

Random Forest (RF), XGBoost, Support Vector 

Regression (SVR), and Multi-Layer Perceptron 

(MLP) have been used to forecast EVCS energy 

demand by integrating historical charging data 

with weather variables. RF and XGBoost showed 

long term prediction, making practical for grid 

management and scheduling. However, its relied 

on short term datasets and lacked key factors such 

as vehicle type, public events, and environmental 

condition, limiting scalability. SVR and MLP 

achieved the best predictive performance, though 

weather inputs reduced accuracy in certain 

conditions [15-16]. The DL methods like 

Recurrent Neural Networks (RNN), and Gated 

Recurrent Unit (GRU) models to forecast energy 

consumption in EVCS. These models captured 

the charging demand patterns effectively for 

demand–supply balance and infrastructure

planning. Nevertheless, the model’s constrained 

by small datasets and high computational 

resource, reducing their feasibility for large-scale 

real-time applications [17].

A. Literature survey

Munseok Chang et al (2021) [18] have 

developed a Long-Short Term Memory (LSTM)-

based forecasting model to predict aggregated 

fast-charging power demand across several 

EVCS. This model accounted for time series data 

with irregular and varying charging behaviours, 

making demand estimation useful for both grid 

planning and operational reliability. However, the 

model is limited to datasets from a single region, 

making it difficult of generalize results to 

different charging infrastructures. Yining Hua et 

al (2022) [19] have implemented a Fine-grained 

RNN (F-RNN) classifier for predicting the energy 

consumption by EVs. It improves predictions 

through segmenting trajectory data, incorporating 

environmental factors, and transferring 

knowledge from ICE/HEV datasets. Nonetheless, 

it depends heavily on pre-trained non-EV data and 

involves complex pre-processing which affect 

adaption to varying real driving conditions. Dan 

Zhou et al (2022) [20] have presented a day-

ahead EVCS forecasting with the integration of 

LSTM with a Bayesian DL (BDL) approach. The 

approach incorporates uncertainty into prediction 

using binary probability theory and variational 

inference, which improved prediction accuracy 

and reliability. Nevertheless, the model required 

high computation cost and requires extensive 

data, which limit it’s real-world applications.

Danlan Wu et al (2021) [21] have developed a 

Generative Adversarial Network (GAN)-

enhanced ensemble model for predicting energy 

consumption in large commercial buildings. The 

method achieves greater predictive robustness, 

resulting in more affluent, accurate training 

datasets. However, evaluate on a single dataset 

with limited set of GAN variants and ensemble 

methods, its generalizability to broader 

applications is limited. Faisal Mohammad et al

(2023) [22] have introduced Convolutional 

LSTM (ConvLSTM) and   Bidirectional 

ConvLSTM (BiConvLSTM)-based encoder-

decoder structures for forecasting energy demand 

in EVCS. The approach enabled spatiotemporal 

representations from multi-location datasets and 

improved forecasting accuracy for intelligent 

energy management. However, the model 

required extensive computational resources and 

lacked with larger multivariate datasets, which 

limits their scalability in various real-world 

contexts.

Existing methods have several limitations in 

accurately forecasting energy consumption, 

therefore in this work implements the ARBS-Net 

classifier to overcome theses challenges and 

improve prediction performance. The 

contributions of the work are,

❖ Data preprocessing stage involves handling 

missing values and treating outliers to data 

quality, reduces inconsistence and reliability 

of energy consumption forecasting.

❖ Performed feature engineering by extracting 

date and creating new features to capture 

pattern in energy consumption, enhancing 

model interpretability.

❖ Conducted EDA using time series and 

statistical analysis methods to identify 

patterns, trends, and anomalies in energy 

consumption.

❖ Implemented an ARBS-Net to forecast 

accurate energy consumption, achieving 

lower error values, and improved temporal 

pattern recognition, thereby delivering 

superior forecasting performance. 

II. PROPOSED SYSTEM DESCRIPTION

In the ARBS-Net based energy consumption 

system, data is gathered from dataset such as, PV 

system specifications, operational measurements

from EVCS, microgrid load data, control 

strategies, and target outcomes as shown in Fig. 2. 

Before model development, the raw data pre-

processed through handling missing values and 

outlier treatment. Handling missing values is 

necessary for addressing incomplete recorded 
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data, which disrupts the learning process, while 

outlier treatment enhances the dataset by 

improving consistency, reducing noise. Once the 

data is cleaned, feature engineering is carried out 

to enhance the dataset by generating new 

variables. Temporal features such as dates and 

time are derived, along with additional context-

based features that find hidden patterns. EDA is 

then performed using time-based and statistical 

data analysis methods to identify load trends,

energy consumption, usage pattern and 

correlation between variables. 

Fig. 2. Proposed block for DL based energy consumption forecasting.

The processed data is used to train the ARBS-

Net model, to accurately forecast energy 

consumption and capture residential EV charging 

behaviour by combining RBF, SNN and attention 

mechanism. The predicted energy consumption 

patterns are analyzed to support demand 

forecasting, load scheduling and efficient 

utilization of renewable resources. 

III. PROPOSED METHODOLOGY

A. Data Preprocessing

The first step in the experiment is data pre-

processing, as time series data often contain 

missing values and duplicates during data 

collection. Data pre-processing is the process of 

identifying, and correcting incomplete, inaccurate

or inconsistent records by either replacing, 

correcting, or deleting the data parts of the data. 

In this work data cleaning involves, handling 

missing values and outlier treatment. 

Handling Missing Values

Missing values in DL are absent attributes in a 

dataset, often caused by data collection, faulty 

sensor readings, and sensor failure in CS. The

voltage level, current, and power readings 

sometimes be missing. Thus, the missing value 

algorithm applied to check whether missing 

values are correlated with any observed variables 

in the dataset. Formally, let ( ),X a b= where a

stands observed value and 𝑏 stands missing value 
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in ,X and let Y be a random variable. The 

missingness mechanism characterized as:

( | , )P Y X                             (1)

where   represents the missing aspect of the 

data. Following this formulation, consider three 

common mechanisms for handling missing 

values:

1. Missing Completely at Random (MCAR):

( ) ( )| , ,P Y X P Y =                      (2)

The missingness of the values is independent 

of the observed values and the unobserved values. 

Assuming a CS fails to record voltage readings 

due to a temporary communication failure. Such

missed readings are classified as MCAR. MCAR 

values are typically handled by random deletion 

and simple imputation.

2. Missing at Random (MAR):

( )| , ( | )aP Y X P Y =               (3)

The missing values typically depends only on 

subset of the observed variables. If power 

consumption data is missing during fast-charging 

sessions, the pattern of missing values is related 

to the variable charging type. MAR often be 

addressed using regression-based or covariance-

based imputation techniques.

3. Missing Not at Random (MNAR):

( )| , ( | , , )P Y X P Y a b =           (4)

In this scenario, when missing values depend

on the missing data itself or on unobserved 

covariates, the missing values is classified as

MNAR. If high current flow values are 

systematically missing due to sensor limitations, 

the missing values are considered MNAR. 

Addressing MNAR typically require advanced 

DL based methods to model unobserved 

associations. 

Missing values in the EV charging dataset are 

addressed using a combination of statistical 

imputation and predictive imputation methods, 

based on whether the missing data are MCAR, 

MAR, or MNAR. 

These various methods utilized to address 

missing values allow for a complete and reliable 

dataset, which ultimately improve accuracy of 

energy forecasting and optimization within smart 

grid integrated EVCS.

Outlier Treatment

Outlier handling is essential to ensure the 

reliability of data. Outliers occur due to abnormal 

readings of voltage, current, power flow, and

charging demand, which result from sensor 

malfunction, unusual load behaviour, and clerical 

error leading to erroneous entry of values. Outlier 

rejection, as part of the data cleaning process,

eliminates or adjust abnormal readings to 

maintain consistency in system parameters. 

Conversely, outlier detection captures significant 

behaviours, such as unusual charging demand, 

irregular load fluctuation, or atypical RE 

generation which indicate potential grid stress and 

system fault. Proper handling of outliers improves 

the quality of economic and reliability 

assessment, and supports the analysis of optimal 

charging approach with EV’s and establishing 

grid stability.

B. Feature Engineering

This study applies feature engineering to 

enhance the utility of the proposed EVCS 

analysis. The raw dataset is refined by extracting 

date-related features, including day, month, and 

time of charging, which capture time-dependent 

variations in charging demand and grid behavior. 

These time features allow for the model to 

recognize seasonal cycles, charging demands 

during peak and off-peak charging pattern, and 

different sized variations in RE availabilities. In 

addition to date-based extraction, new features are 

created from existing variables to identify 

relationships that less apparent in the dataset. 

Thus, the model is specifically using indices like 

the power-to-current ratio, voltage fluctuation 

index, and energy efficiency ratio to better 

represent of CS performance. By embedding 

domain knowledge through these new features, 

the dataset more accurately reflects both the 

operational efficiency and reliability of the 

charging network. The integration of both new 

temporal and engineered features added depth to 

the learning process of the classification models, 

which increased accuracy and interpretability. 

With this approach, it ensured that the proposed 

system utilizes raw operational parameters, while 

also recognizing higher-level behaviours, 

enabling more effective analysis of EV-grid 

interactions.

C. Exploratory Data Analysis

The EV charging dataset using EDA to 

discover hidden features, usage trends and 

relationships in energy demand. Statistical 
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analysis techniques including histograms, box 

plots and correlation plots are employed to 

examine the distribution of charging sessions, 

energy and charging time. The analysis is able to 

display differences in demand for various time 

intervals and revealed a dependency on State of 

Charge (SOC), time of connection and consumed 

energy. Subsequently, a time-series analysis 

captured the time-based features of charging 

behavior. This analysis considered as the 

characteristics of trend, seasonality, cyclicity, and 

irregularity representing the long-term growth in 

demand, periodic cycles of charging, medium 

term variations, and shorter-term fluctuations. 

These insights support accurate modeling, 

forecasting of charging demand while also 

facilitating higher integration of renewable 

energy sources.

D. Attentive Radial Basis Spiking Net (ARBS-

Net)

The ARBS-Net is a hybrid DL model which 

combines the nonlinear generalization capacity of 

RBF kernels, SNNs, and the feature refinement 

capability of attention methods to accurately 

model EV charging demand and the variability in 

RE generation. The RBF kernel is the first layer 

to capture nonlinear dependencies in the input 

features. The RBF kernel is defined as:

( )
( )

2

2

,

2,

d x x

K x x e 



=                          (5)

Where ( ), 'd x x is the Euclidean distance 

between feature vectors     ' :xand x

( ) ( )
2

', i i

i

d x x x x x x= − −                  (6)

In this expression,   is a parameter that 

controls the level of nonlinearity, with smaller 

values yielding smoother mappings and larger 

values enabling the model to capture more 

complicated variations in demand.  The RBF is 

expressed in terms of the parameter
2

1

2



= , 

resulting in the equivalent expression,

( )
2

, x xK x x e − −  =                      (7)

The RBF mapping embodies a nonlinear 

transformation of the EV charging features, 

allowing for more effective representation of the 

flux of demand before transition into a network of 

spiking neurons. In order to represent fluctuation, 

the spiking component employs a Leaky 

Integrate-and-Fire (LIF) neuron model, which 

provides a balance between biological principles 

and computational efficiency. As part of that 

transformation, the pre-synaptic input represents 

the charging demand or renewable energy 

fluctuation which is predictable to the LIF neuron 

as a weighted signal. The membrane potential 

evolves over time and is based on the existing 

input and historical charging activity. The scaling 

of synaptic weights determines the significance of 

events and the membrane time constant controls 

the depth of memory. The discrete-time LIF 

neuron is represented, as follows,

( )1 1

1
t t t reset tH V V V X


− −= + − − +         (8)

Where 
tX refers to the input charging demand 

or renewable fluctuation at time t , 
1tV −

is the 

membrane potential corresponding to 

accumulated charging state, 
resetV is the reset 

potential, and  is the membrane time constant 

controlling the loss of previous load influences. 

The synaptic weight determines the magnitude of 

each charging event, while the time constant 

control the memory length, allowing the model to 

flexibly capture short term deviations and long-

term variation in EV demand and renewable 

supply.

In ARBS-Net, temporal feature learning is 

further enhanced by incorporating a Temporal 

Attention (TA) module that emphasize the most 

important charging events over time. 

The aim of this module is to predict the 

salience of a frame in the spiking neural sequence, 

which utilize the temporal statistics of the 

distribution at the selected frame while also 

integrating contextual information from adjacent 

frames. 

For the spatial input tensor of the n th− layer 

at time point t , denoted , 1

L B C

t nX  

−  , where 

 C is the size of the channel, the TA module 

executes a squeeze operation to obtain a statistical 

descriptor of the distribution of events. To obtain 

the statistical vector at time frame t , consider, 

( )1

, 1

1 1 1

1
, ,

C L B
n

t t n

k i j

s X k i j
L B C

−

−

= = =

=
 

      (9)



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

91

Fig. 3. Structure of ABRS-Net.

This accurately represents the total activity 

level of EV demand or renewable generation at 

that moment. In the excitation step, the statistical 

vector 
1ns −

is given to a two-layer fully connected 

network that finds correlations over frames, 

thereby producing TA scores. This operation is 

defined as,

( )( )

( )( )( )
2 1 1

1

2 1 1

n n n

n

n n n th

W W s
d

f W W s d

 

 

−

+

−




= 
−

       (10)

Here 𝛿 𝑎𝑛𝑑 𝜎 denote the ReLU and sigmoid 

functions respectively, 1
rT T

nW


 and 

2
rT T

nW 
 are trainable weight matrices, r

controls model complexity, ( )f  is the Heaviside 

step function, and 
thd is the TA threshold. The 

final input at timestep 𝑡 is achieved by applying 

the TA score to the input tensor as follows,

1

, 1 , 1

n

t n t t nX d X−

− −=              (11)

Its amplify frames related to significant 

charging volatility or renewable generation 

variations. Then, the dynamics of the TA-LIF 

layer’s membrane potential are represented as 

follows, 

( ), 1, , 1,t n t n n t nU H g W X− −= +              (12)

Where 1,t nH − represents historical membrane 

potential and ( )g  is the weighted synaptic 

transformation of the attended input. As a result 

of combining nonlinear mapping from the RBF 

kernels, spiking dynamic and frame level 

refinement using TA, ARBS-Net is able to learn 

nonlinearities, temporal dependencies and salient

patterns related to EV charging demand and 

renewable generation integration. The ABRS-Net 

structure as displays in Fig. 3. This hybrid 

architecture serves as a robust and biologically-

inspired computational framework that leads to 

improvement in forecasting accuracy, robustness 

against volatility and increased interpretability 

within renewable-based EVCS.

IV. RESULT AND DISCUSSION

The developed work ABRS-Net to forecast

energy consumption in EVCS. In this work, 

python software used to evaluate the model’s 

performance through MSE. RMSE, MAE and 
2  R score verifying its reliability in predicting 

charging demand. The EV Charging Grid 

Optimization Dataset acquired from Kaggle that 

has 1000 records containing relevant operational 

and infrastructure parameters of EVCS. The 

dataset includes station ID, station location, EV 

station charging type, number of chargers, 

voltage, current, power consumed, power loss, 

voltage variation, and EV identifiers. These 

parameters produce information on the technical 

and operational characteristics of the EV charging 

infrastructure and are useful for analyzing grid 

performance, charging efficiency, and energy 

utilization. The dataset is also useful for modeling 

and optimization as it contains variability for the 

various electrical parameters such as voltage, 

current, and power consumption. It also includes 

power loss and voltage variations to determine the 

reliability and stability of the grid based on 
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variable charge demand. The data is divided into 

training and testing data, with 80% of the data as 

training data, and 20% of the data as the testing 

and validating data. This dataset has structured 

numerical and categorical data making it useful 

for DL studies to improve EVCS efficiency and 

grid stability. 

Fig. 4. Time series analysis of EV charging 

parameters.

Fig. 4 displays time-series analysis of smart 

grid-integrated EV charging parameter. It 

presents four elements is evaluated from 2024-01-

01 to 2024-01-11. Predicted Power Demand: 

estimates the required level of load across each 

time stamp and Charging Cost shows the 

changing costs associated with charging over 

time. Power Consumed is the actual energy from 

the grid when charging any EVs, and Grid 

Stability Score indicates the grid’s strength and 

balance are sustained under different load 

conditions. 

Henceforth, understanding the 

interconnections and relationships between EV 

charging demands, price volatility, energy 

consumption, and grid stability will aid in 

effectively allocating energy in a smart grid-

connected world.

Fig. 5. Distribution pf charging types in the 

dataset.

Fig. 5 shows distribution of charging types in 

the dataset delivers the percentage of fast 

charging has 35.2%, conventional charging has 

33.1%, and Vehicle-to-Grid (V2G) charging has 

31.7%. the distribution charging types highlights 

a balanced representation of charging modes 

allowing for a comparative evaluation of each 

charging type in terms of energy demand and grid 

performance.
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Fig. 6. Battery capacity vs charging time.

Fig. 6 shows the relationship between battery 

capacity and charging time for EVs, with the 

bubble size and colour indicate charging power. It 

illustrates as battery capacity increases charging 

times also tend to widely difference, due to the 

varying levels of charging power across the 

vehicles. It highlights the interaction between 

battery size, charging time, and charging power 

which is crucial connection for optimizing 

charging strategies and grid management.

Fig. 7. Distribution of voltage stability category.

Fig. 7 represents distribution of voltage 

stability categories in the smart grid system, 

which shows the number of categories classified 

as Excellent (351), Moderate (404), and Poor 

(245). The results suggest that most cases are

moderate stability, substantial number of cases 

with excellent voltage, while relatively few are 

categorized as poor stability, which demonstrates 

the variability of stability conditions with the 

integration of EVs.

Fig. 8. Average Power consumed vs power loss.

Fig. 8 depicts Average power consumption 

and power loss illustrates that the system reports 

average power consumption of 12.79 units versus 

power loss of 2.51 units. This shows that a 

significant portion of the supplied energy is 

successfully utilized, with only a minor amount 

energy as losses. The relatively minimal loss 

range demonstrates the system's efficacy in 

handling EV charging and grid operation.

Fig. 9. Distribution of locations.

Fig. 9 depicts the distribution of CS, 

comparing their presence in urban (343), 

suburban (336), and rural (321) areas.  The results 

show a rather equal deployment across regions, 

with urban areas having a slightly larger 

concentration. This balanced distribution 

promotes greater accessibility and ensures that 

EV adoption is unhindered to specific regions.
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Fig. 10. Correlation heatmap of dataset features.

The heatmap in the Fig. 10 depicts the 

interrelationships between features including 

location, charging type, number of chargers, 

voltage level, current flow, power consumption, 

power loss, and voltage variations. Furthermore, 

the correlation coefficients between most features 

are low, demonstrating that non-electrical features 

remain linearly dependent on grid-related 

variables. The relationship between current flow 

and power consumption showed the largest 

positive association, which is probably due to 

their direct impact on the charging process and 

overall energy demand.

Fig. 12. Train and Test Distribution.

Fig. 12 displays data splitting technique used 

for developing models, with 80% of the dataset 

allocated for training and 20% for testing. The 

splitting process delivers sufficient information 

for learning while also preserving a strong 

assessment dataset. The distribution improves 

model generalization and delivers an accurate 

evaluation of performance.

Fig. 13. Comparison of error metrics.

Fig. 13 illustrates an assessment of error 

metrics including the MSE, MAE, and RMSE, to 

evaluate the proposed model predictive accuracy. 

The MSE value of 0.1183 indicates better 

generalization properties, the MAE is 0.2694, 

which signifies the average absolute difference 

between predicted value and actual value and the 

RMSE is 0.3439, it’s more sensitive to deviation. 

Thus, the comparative assessment indicates that 

the model persists in minimizing error across a 
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variety of performance metrics, demonstrating its 

dependability and accuracy.

Fig. 14. Actual vs. predicted values plot.

Fig. 14 shows the model's performance by 

comparing actual dataset values to predicted 

results. The precise alignment of the actual and 

predicted curves demonstrates the model's 

stability for capturing dynamic variations in 

charging-related factors. The minimum difference 

between the two series shows that the proposed 

structure delivers accurate predictions for EV 

charging system analysis.

A. Comparison

Fig. 15. Comparison of MAE.

Fig. 15 illustrates the MAE performance of 

various DL methods for energy consumption 

forecasting. The comparison involves F-RNN

[19] has 4.557, LSTM-BDL [20] has 3.36, GAN

[21] has 1.67 and the proposed ARBS-NET has 

0.2694, its shows the proposed method achieves 

the lowest MAE, thus demonstrating superior 

prediction accuracy compared to other listed DL 

methods.

Fig. 16. Comparison of MSE.

Table 1

Comparison of RMSE

DL techniques RMSE

F-RNN [19] 6.503

LSTM-BDL [20] 5.033

GAN [21] 4.83

ConvLSTM [22] 0.71

PROPOSED 0.3439

Fig. 16 illustrates the MSE value of various 

DL methods for energy consumption forecasting. 

The recorded MSE values are F-RNN [19] 

(4.228), ConvLSTM [22] (0.878) and the 

proposed ARBS-NET (0.1183), its shows that the 

proposed method is lowest MSE, highlighting its 

effectiveness in minimizing prediction error 

compared to other listed DL methods.

Table 1 presents RMSE values for various DL 

methods such as F-RNN, LSTM-BDL, GAN, 

ConvLSTM and proposed model. Among these 

techniques, proposed method achieves lowest 

RMSE, ensuring its superior predictive 

performance and robustness. Lower RMSE, 

MAE, and MSE values indicates that the model is 

more accurate and reliable. Reducing error rates 

illustrate the model's ability to accurately reflect 

actual energy usage patterns. This contains exact 

forecasting, facilitating the efficient operation, 

planning, and energy management of EVCS.

V. CONCLUSION

The proposed ABRS-Net based system 

effectively tackle the difficulty of predicting 

energy consumption in smart grid integrated 

EVCS. By combining RBF, SNN and attention 

mechanism, the model captures the temporal 

pattern and non-linear behaviour of EV charging 

demand. The extensive data preprocessing, 

feature engineering and EDA stages effectively 

achieves high quality inputs, improving model 
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dependability and interpretability. From the 

python software, the proposed ARS-Net 

outperform traditional DL methods in terms of 

MSE of 0.1183, MAE of 0.2694, RMSE of 0.3439 

and 
2R score of 0.99. The proposed system aids 

in pro-active energy distribution and efficient load 

balancing, as well as grid stability, therefore 

allowing for sustainable RE integration and 

facilitating optimal performance of EV charging 

infrastructure. Furthermore, this work illustrates 

the intelligent forecasting via ARBS-net enhance 

energy management methods, decrease 

operational losses, and contribute to a reliable, 

globally resilient, efficient EV charging systems 

in future smart grids.
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