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Abstract. The objective of this article is to determine the permissible changes in the informative
characteristics of navigation control systems under the influence of destructive effects used to
describe objects on the observation surface (OS), while maintaining a given level of unmanned aerial
vehicles (UAV) efficiency. This objective is achieved by establishing an analytical relationship
between the UAV efficiency indicator and the probability of localizing a reference object in the
image; by studying the dependence of this probability on the characteristics of the decision-making
function (DMF) it generates, with subsequent determination of its relationship with the permissible
changes in the informative characteristics (IC). The solution to the first problem is based on a
probabilistic approach to assessing the effectiveness of UAVs under destructive effects on objects
on the observation surface (OS). The solution to the second problem is based on establishing a
mathematical relationship between the probability of localizing a reference object and the
characteristics of the decision-making function (DMF) it generates. The solution to the third problem
consists in assessing the permissible changes in stable informative features of an image (IF), at which
the computer vision system (CVS) remains operational. The study was conducted in the MATLAB
software environment using images obtained from Google Earth. It has been shown that the
permissible changes caused by destructive impacts, in terms of the change in the area of the reference
object, are within the range of (10-15)% of their total area, regardless of the type of observation
surface (OS).
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Rezumat. Scopul lucrarii este de a determina modificdrile permise in sistemele de control al navigatiei ale
caracteristicilor informative sub influenta efectelor distructive utilizate pentru a descrie obiectele suprafetei de
ochire (SS), la care se mentine un anumit nivel de eficienta a vehiculelor aeriene fara pilot (UAV). Acest
obiectiv este atins prin stabilirea unei relatii analitice Intre indicatorul de eficienta al UAV si modificarile
permise ale caracteristicilor informative sub influenta factorilor distructivi. Solutia la prima problema se
bazeaza pe o abordare probabilistica a evaluarii eficientei UAV. Solutia la a doua problemd se bazeaza pe
stabilirea unei relatii matematice intre probabilitatea localizarii unui obiect de referinta si caracteristicile
functiei de decizie. Se obtin relatii analitice pentru o estimare asimptotica a probabilitatii localizarii obiectelor
de referintd. Solutia la a treia problema implica evaluarea modificérilor permise ale caracteristicilor informative
ale imaginilor. Studiul a fost efectuat in mediul software MATLAB utilizand imagini preluate de pe Google
Earth. Se demonstreaza ca modificarile permise cauzate de impacturi distructive in ceea ce priveste modificarea
ariei unui obiect de referintd se incadreaza in (10...15)% din aria lor totald, indiferent de tipul suprafetei de
ochire. Cel mai semnificativ rezultat este determinarea modificarilor permise ale caracteristicilor informative
care mentin un anumit nivel de eficientd a UAV-ului. Semnificatia rezultatelor obtinute consta in determinarea
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erorii permise In localizarea unui obiect, care leagd valorile functiei de decizie cu varianta si intervalul de
corelatie al acesteia.

Cuvinte-cheie: vehicul aerian fard pilot, sistem de vedere artificiald, obiect de referintd, caracteristici
informative, impact distructiv.

HccnenoBanue BJMSHHMA B CUCTEeMAX YIIPABJICHUS HABUranuel M3MeHeHU HH(POPMATHBHBIX
NPU3HAKOB M300paxeHHil HA PYHKIMOHMPOBAHHE 0eCIIMIOTHBIX JIETATEIbHBIX ANNAPATOB
!Cornuxon A.M., 'Tiopuna B.IO., 2Ilerpos K.D., 2JIykbanosa B.A.,>/Imutpues O.H.,
‘Ynosenko C.I'., “Ko63es U.B.

'XapbKkoBckuii HalMOHaNbLHEIN yHUBepcuTeT Bosaymnbix Cun umenu Mpana Koxeny6a, Xapbkos, YKkpauHa

ZX apbKOBCKMI HALIMOHANBHBIN YHUBEPCUTET PaAHOdIEKTPOHUKY, XapbKoB, YKpauHa
SHHcTUTYT HenbITanui M cepTU(UKAINK BOOPYKEHHUS U BOEHHOMN TEXHUKH, UepKacchl, YKpauHa
4X apbKOBCKMIi HAIIMOHAILHBIN SKOHOMUYECKUH yHUBEepcuTeT uMenn Cemena Kysnena, XapbKos,

Annomayusn. 1lenpto cTaThu ONpeneNeHue JOMYCTUMBIX M3MEHEHHH B CHCTeMaxX YIpPaBICHUS HaBUTaluei
MH(OPMATUBHBIX NMPU3HAKOB 10/ BIMSHUEM AECTPYKTHUBHBIX BO3/CHCTBHUM, MCIONB3YyEeMBIX ISl OMUCAHUS
00BeKTOB MOBepXHOCTH Bu3upoBanust (I1B), mpu KOTOPBIX COXpaHACTCs 3aJaHHBINA YPOBEHb 3P PEKTHBHOCTH
OecnuoTHBIX JietaTenbHbIx ammapatoB (BIIJIA). IloctaBieHHas 11eNb JOCTHUTaeTCs MyTeM YCTAHOBJICHHUS
AHATMTHYECKOH cBs3M moka3areis 3¢ dpexTuBHOCTH BITJIA ¢ BEepOsSTHOCTBIO JOKAIU3aINU 00BEKTA IPUBI3KH
Ha WM300paKCHWH; HMCCIIEAOBAHUS 3aBHCHMOCTH 3TOH BEPOSATHOCTH OT XapaKTEPUCTHK (OPMHUPYEMOH €ro
pematomeii pynkunu (PP) ¢ mocnemyrommM ONpeneIeHHEM €€ CBA3H C AONMYCTUMBIMH H3MEHEHHSIMH
nHpopmatuBHbIX npu3HakoB (MUII) mox Bo3zmeiicTBHEM NecTpyKTHBHBIX (pakTopoB. Permenne nepBoit 3agaun
OCHOBAaHO Ha BEPOSTHOCTHOM Moaxoje K oneHke 3¢p¢extuBHOCTH BIIJIA B yclOBHSX HECTpYKTHBHBIX
BO3JICHCTBIH Ha 00BEKTHI MoBepxHOCTH Busuposanus (I1B). [lomydeHo aHanMTHYECKOE COOTHOLICHUE JUIA
OIICHKH BeposiTHOocTU MecToonpenenenus BIIJIA, nokazana ee B3auMocBsizb ¢ PD. Pemienue BTopoi 3agaun
6a3upyercsi Ha YCTaHOBJIEHHH MaTeMaTHUECKOHW 3aBUCHUMOCTH MEXIY BEPOSITHOCTBIO JIOKAIU3AIMH 00BEKTa
NPUBSI3KM M XapakTepucTHkamu ¢opmupyemoil eto P®. IlomyueHbl aHaIUTHYECKHUE COOTHOLICHUS IS
ACHMIITOTHYECKOI OIICHKM BEPOATHOCTH JIOKAJIM3allMd OOBEKTOB, YHCIEHHO CBSA3aHHBIE C TapaMeTpaMu
P®. Pemenue Tperheil 3amaud 3akiO4aeTCs B OLEGHKE JONYCTUMBIX H3MeHeHHi pobactaeix WII
M300pakeHUH, NpU KOTOPhIX cucrema TexHudeckoro 3peHus (CT3) coxpanser paboTOCIOCOOHOCTS.
HccnenoBanme BIOTHEHO B mporpammuoi cpene MATLAB ¢ ucmonb30BaHHEM H300pakKeHUH, B3ATHIX U3
Google Earth. IToka3zaHo, 4To IOITyCTHMBIE H3MCHEHHS, 00YCIIOBICHHBIE IECTPYKTHBHBIM BO3/ICHCTBHEM I10
MOKa3aTeIi0 M3MEHEHUs IUIOMAa OO0BeKTa MpHUBA3KH, Haxonsarcs B mpepenax (10...15)% ot ux obmeit
wionaay, HezaBucuMo oT Tuna I1B. Haumbornee cymiecTBEHHBIM pe3yJbTaTOM SBISAETCS OIpEIeiIeHHUe
JorrycTuMbIX m3MeHeHui UII, mpu KOTOpBIX COXpaHseTcs 3aJaHHbli ypoBeHb 3(dexruBHOCTH BIIJIA.
3HAaYMMOCTD IOJTyYEHHBIX PE3YJITATOB COCTOUT B OTIPE/ICNEeHUH JOIYCTUMO OIMOKH JIOKATU3aI[iH 00bEKTa,
cBaA3bIBaOLIEl 3HaueHus PD c ee gucnepcuedl M MHTEPBAIOM KOPPESLMHU, & TaKKe€ B BO3MOXKHOCTH
nporHo3uposanus 3¢ dexrnBHocTH npuMeneHust BITJIA na stane ¢popmupoBanus PO.

Knrouesvie cnoea: 6ecninnoTHBIN JIeTaTeIbHBIN anmapaT, CUCTEMa TEXHUYECKOT0 3pEHHUsS, OOBEKT MPUBSI3KH,
MHGOPMATHUBHBIE IPU3HAKH, IECTPYKTUBHOE BO3/IEHCTBHE.

INTRODUCTION industrial sites, agricultural crops, forests, and

many other objects requiring survey and

The intensive development of unmanned
aerial  vehicles  (UAVs),  continuously
accompanied by rapid modernization, has led to
a significant expansion of their application
domains [1]. This has been made possible by
improvements in sensing and data acquisition
technologies, the adoption of new methods for
real-time data processing, the emergence of
lightweight and high-strength materials, and the
capability for autonomous operation without
operator involvement.

Owing to their ability to ensure high
efficiency and accuracy of monitoring, UAVs
have become an integral component in the
inspection of critical infrastructure facilities,
such as energy and transportation infrastructure,
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assessment. In addition, UAVs have been widely
adopted in search and rescue operations, in the
monitoring of natural disasters, and for the
prompt assessment of evolving situations.

A key role in the autonomous navigation of
UAVs is played by strapdown inertial systems,
which are complemented by computer vision
systems. These systems, along with refining the
UAV  position, simultaneously  perform
monitoring and visual inspection of the surveyed
objects [2-3].

The composition of a computer vision system
may vary significantly depending on the
intended purpose of the UAV, which determines
the possibility of wusing such information
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acquisition sensors as radar, radiometric, and
optoelectronic sensors.

The quality of system operation and,
consequently, the quality of the extracted
information depend on many factors, the
influence of which inevitably leads to variations
in the informative features characterizing the
observed objects.

These factors can be divided into three
groups. The first group of factors is associated
with the state of the propagation medium of the
computer vision system operating signals. The
second group is related to the information
acquisition sensors themselves and to the system
of primary and secondary data processing.
Finally, the third group is associated with the
information source, which is the viewing surface
(VS) and the objects located on it.

Factors determining the state of the signal
propagation medium include any physical
obstacles that may, for example, cause signal
blockage or reflection, as well as signal
shielding. They also include weather conditions
associated with precipitation, fog, and cloud
cover, which lead to signal absorption or
scattering.

The second group of factors includes UAV
vibration and instability, which affect the
formation and processing of the acquired
information. Finally, the third group of factors
comprises the source of the original information
itself, namely the viewing surface and the
monitoring objects located on it.

A considerable number of studies [2-9] are
devoted to the influence of these factors on the
efficiency of computer vision systems,
proposing various approaches to mitigating their
effects. The influence of the first two groups of
factors has been studied in the greatest detail.
The third group has also been addressed from the
standpoint of the source of the original
information. In this case, it is commonly
assumed that the information source is stable in
its characteristics and invariant over time,
possesses certain geometric and structural
features, and provides sufficient discriminability
by the corresponding sensors to ensure reliable
operation of the UAV computer vision system.
However, changes in the original information
caused, for example, by destruction,
deformations, or changes in the positions of
objects, the appearance of new objects leading to
alterations in the overall image structure, or the
rapid intentional modification of geometric
dimensions through the use of masking materials
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and films, will inevitably result in changes in the
informative features used by the computer vision
system sensors and, consequently, in a reduction
in UAV operational effectiveness. Based on this,
there arises a need to investigate the permissible
robust changes in informative features under
which the system remains operational with the
required level of effectiveness.

Literature Review.

In computer vision  systems, the
determination of the position of autonomous
UAVs is based on the comparison of reference
and current images generated during the UAV
flight. Discrepancies between these images
critically affect UAV operational effectiveness
and may even result in failure to accomplish the
intended mission. The problem of UAV position
determination using computer vision systems
under conditions that cause image mismatches
has been addressed in numerous studies,
particularly in [1-5].

Methods for improving the efficiency of
computer vision systems, based on the use of
additional informative features for image
description, are discussed in [10-21].

In [10], an approach to object image
recognition in unmanned systems based on the
image signatures of their contours was
investigated. In [11], to address mismatches
between visual features of a reference map
fragment and images captured from the UAV, it
is proposed to use correspondences of deep
features extracted through unsupervised learning
using a triplet-loss framework. Additionally, the
study suggests the supplementary use of visual
odometry with a procedure for anchoring to the
reference map after obtaining a sufficient
number of features, accompanied by the
generation of hypotheses regarding the UAV’s
position. This approach enables the planning of
flight paths over terrain with sufficient feature
diversity required for navigation.

In [13], the results of modeling the influence
of meteorological conditions on UAV automatic
landing performance are presented. Methods for
simulating meteorological conditions were
developed, and UAV landing tests on a platform
were conducted under conditions simulating
wind, changes in illumination, fog, precipitation,
as well as their combinations. Analysis of the
results  demonstrated the impact  of
meteorological conditions on the UAV landing
time, with consideration of wind leading to a
significant increase in landing duration.



PROBLEMELE ENERGETICII REGIONALE 1(69)2026

In [14], to reduce the impact of scale and
viewpoint changes on image matching accuracy,
a localization method using semantic
segmentation and topological features was
proposed. This method reduces the effect of
scale and orientation variations on image
matching accuracy, improves the precision and
reliability of matching, and significantly lowers
computational requirements for the reference
map database.

In [15], a hybrid CNN-Transformer network
model is proposed for the detection and
matching of image features. ResNet50 is used as
the backbone network for feature extraction. An
enhanced feature fusion module is employed to
combine feature maps from different levels,
followed by a Transformer encoder—decoder
structure for feature matching to obtain
preliminary correspondences. To eliminate
mismatched points based on the geometric
similarity of internal points, a geometric outlier
removal method is applied, resulting in more
reliable correspondences.

In [16], to improve learning efficiency, an
enhanced deep reinforcement learning approach
is proposed, comprising two distinct training
stages: reinforcement learning and self-
supervised learning. During the reinforcement
learning stage, a deep Q-network (DQN) was
implemented and trained using the Bellman
equation loss function. The self-supervised
learning stage, on the other hand, is responsible
for fine-tuning the DQN’s base layers and is
guided by a contrast loss function. The main
advantage of incorporating the self-supervised
stage is the accelerated encoding of the input
scene captured by the UAV camera. To further
enhance navigation efficiency, an obstacle
detection model was implemented, reducing the
number of UAV collisions.

In [17], a method for detecting ground
landmarks during autonomous mobile robot
navigation is proposed, based on the distribution
features of average color intensity across the
columns of the robot’s camera matrix. It is
shown that exceeding the threshold value of the
determinant product indicates the detection of a
ground landmark.

In [18], the use of autonomous navigation for
mobile robots in indoor environments with
vision sensors is examined. It is shown that
computer vision systems can be used for object
recognition in robot control applications. The
results demonstrate that a mobile robot can be
successfully controlled using a webcam that
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detects objects and distinguishes a tennis ball
based on its color and shape.

In [19], a navigation algorithm is proposed
that simultaneously determines the positions of
robots and updates landmarks within an
industrial environment. The study investigates
the improvement of localization accuracy for
mobile robots in continuous operation, where a
Kalman filter is applied to integrate odometry
data with scanner data to achieve the required
reliability and precision.

In [20], a system for object detection by an
autonomous mobile robot using an artificial
neural network is presented. It is noted that
autonomous robotic systems with obstacle
detection capabilities are relatively complex, as
extracting information from an image stream of
the environment, consisting of the robot and
obstacles, can be a very challenging task to
achieve real-time performance with minimal
computational cost. It is demonstrated that the
use of computer vision enables the development
of systems capable of navigating the surrounding
environment.

In [21], the behavior of stereo vision based on
correlation is analyzed with the aim of
identifying ways to improve its quality while
maintaining real-time applicability. Three
methods are proposed: two are aimed at
enhancing disparity images, and one is designed
to detect potential errors overall.

Results are presented for real stereo images
with ground-truth data. Comparison with five
standard correlation methods shows that
improvements to basic stereo correlation are
achievable in real time on modern computer
hardware.

In [22], a method for calculating the
reliability of computer vision systems is
presented. A probabilistic approach using a
neural network demonstrated that the probability
of errors in information processing and the
probability of code combination transformation
are negligibly small compared to the probability
of incorrect image classification.

Thus, despite a wide range of studies, to date,
issues related to the impact of changes in
informative features extracted by computer
vision systems under the influence of destructive
effects and infrastructure alterations—while
ensuring the required level of UAV operational
effectiveness—have not been adequately
addressed.

The aim of the study is to determine the
permissible changes in informative features
within navigation control systems, under the
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influence of destructive effects used to describe
viewing surface objects, at which a specified
level of UAV effectiveness is maintained.

This will make it possible to avoid incorrect
localization of the reference point (RP) or the
inspected control object depending on the degree
of destructive effects on VS objects, and,
consequently, to ensure the required operational
effectiveness of UAVS.

To achieve the stated goal, it is first necessary
to address the following tasks:

1. Formulate the problem of assessing the
effectiveness of UAVs equipped with computer
vision systems under conditions of destructive
effects on viewing surface (VS) objects.

2. Justify a criterion for determining the
permissible localization error of the reference
object.

3. Determine the limits of permissible
changes in the informative features of observed
objects, under which the computer vision system
remains operational.

METHODS, RESULTS AND
DISCUSSION

According to the findings of [2, 4, 22], the
probability of accomplishing the mission is used
as the indicator of effectiveness for UAVs
equipped with computer vision systems (CVS).
This probability serves as an integral measure,
taking into account both the reliability of the
UAYV itself and the efficiency of its navigation
system. Let us consider that the hardware of an
autonomous UAV navigation system includes a
strapdown inertial navigation system (SINS) and
an auxiliary computer vision system that corrects
the UAV’s coordinates. Based on this, the
probability of accomplishing the mission by
autonomous  UAVs—represented as the
probability of UAV position determination P,

— can be expressed as:

P, =P ( 1o Rl )( 1o Rnlon) )+
) 1)
+(1—PK)(1—e'(R“”/””) )
where:
P. — probability of successful position

correction by the CVS;
R, — effective radius of the CVS;

o, — root mean square error (RMSE) of the

strapdown INS;
R,, — dimensions of the reference object;

o,. — RMSE of the corrective CVS.
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Formulation of the Problem of assessing
UAV effectiveness equipped with computer
vision systems under destructive effects on
viewing surface objects.

In (1), the probability of successful CVS
correction P_, generally depends on a multitude

of random factors, grouped above into three
categories. Since the UAV navigation problem is
solved taking into account only the impact of
destructive factors on viewing surface (VS)
objects P_is effectively determined by the

probability of localizing the reference object in
the imageP,. This probability, in turn, is
determined by the decision function (DF)
generated by the CVS, which at time tcan be
represented as:

S, (r.1),
RED=Fels, =[5, G s | @

where:
F,, — image comparison operator;

S, (r,t) —current image (CI) of M x N ;

r— UAV spatial position vector;
S, — reference image (RI);

i, j— coordinates of the viewing surface image

element.

Based on the above reasoning, the
effectiveness of UAVs equipped with computer
vision systems under destructive effects on
viewing surface (VS) objects will be determined
by the correspondence of the current image (ClI)
to the reference image (RI) stored in the onboard
computer memory.

Thus, to ensure the required effectiveness of
UAVSs equipped with computer vision systems
under destructive effects on VS objects, it is
necessary to maintain an appropriate probability
of localizing the reference point (RP) in the
image P, in accordance with the selected global

threshold of the decision function.

Since the CI and RI, after the segmentation
procedure, represent a set of informative features
describing VS objects, there arises a need to
investigate the boundary changes of these
informative features under the influence of
destructive factors, at which the required

probabilities P, and, consequently, P, are
maintained.
2. Justification of the Criterion for

Determining the Permissible Localization Error
of the Reference Obiject.
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The choice of a criterion for determining the correct localization of the reference point by the
permissible localization error of the reference computer vision system, according to [23], can
object is made based on the task solved by the be expressed as:
navigation system and the principles of its
design. P,=P[RK)>R(),i=12..ni=Kk], 3)

Since the determination of the UAV’s
deviation from the specified trajectory is where:
performed by comparing images, the normalized L )
cross-correlation coefficient (NCC) is used as a n=A—+1 — number of DF outliers;
measure  of  similarity, allowing the t
establishment of a strict threshold for the L —a priori interval of possible DF values.
decision function. Accordingly, the probability of anomalous

The position of the NCC maximum provides localization of the reference point can be
an estimate of the object coordinates, while the expressed as:
resulting correlation analysis field enables
localization of the reference point with subpixel P,=1-P =P[R{)>R(K).i=K.  (4)
accuracy. In other words, using the NCC as the
criterion for determining the permissible Let us denote by f,,(#) the distribution

localization error of the reference object allows

. o AN function of DF values at the points
highly accurate UAV position determination. P

In th f a hiah d £ similarit corresponding to the true UAV position, and by

n the case ot a high degree of simifarity f., (#) the distribution function of DF values in
between the compared images, the correlation O ) ]
function will be unimodal, with minor side the region of side branches. Then expression (3)

outliers. However, under destructive effects on can be written as:
viewing surface (VS) objects, the correlation

analysis field, instead of a single sharp © N |R

maximum, will exhibit multiple small outliers, P=1 1 [J fr(i)®) dy} fra® R, (5)

and several local maxima of comparable -l =1l-w

amplitude may appear. In such cases, Pk

localization errors of the reference point— N R

referred to as anomalous errors—can occur. The  multiplier [T | fR(i)(Y) dy in

When such errors arise, the computer vision i=1-00

system may select a peak that does not i %k

correspond to the true position of the reference expression (5) will be denoted as P (R).

point in the image, which inevitably leads to a . N )

significant reduction in the probability of Then, assuming that the variables R(i) and

reference point localization, serious UAV R(k) are independent normally distributed

pOSitiOﬂ determination errors, collisions with random variables and omitting intermediate

obstacles, or loss of orientation. transformations, expression (5) can be written in
Based on the above reasoning, let us consider its final form:

the case when, as a result of image comparison,
the generated decision function contains, along

with the main peak, several additional peaks. p =1 ?exp _y-<RK) >]2 y
For simplicity of reasoning, let us represent T o 52 o 252

the decision function (DF) in a one-dimensional c c

form. @)
We then move to a discrete representation in

the form of its values R I, at n points I, =iz, . 9 1’1‘[ o Y <R0> i,
7, — the interval between DF values at points i =k o

where they become statistically independent i=1

(correlation interval). )
Thus, the values R I, =R(ir,) will be where:

statistically independent, and one of the n points o2 _ variance of R(K):

will coincide with the true value of the parameter

l, . With this representation, the probability of <.> —expected value;
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@ (x)— probability integral;
o~ root mean square deviation of R(i).

The assumption of normally distributed noise
and signals for short accumulation times, which
is typical for systems of this class, is a classical
and mathematically justified approach.

Taking into account the random nature of the
variables in (7) and using the Laplace method to
estimate the asymptotics of certain integrals
[24], the range of variation of P, was

determined. For this purpose, based on the three-
sigma method, which allows determining the
boundaries of reliable system operation and
identifying anomalous errors, expression (5) is
represented as:

(y-<R(>]°

1 RKHSV20¢ ~ 202
P - [ e
V270 R(k)-SZoc

(8)
N ) .
Ny qj[LR('Pde,
izk on
i=1
where S~3..4.

Taking into account (8), the minimum and
maximum values of P, were determined for

oc -0 and oy — oo, fixing the corresponding

expected values and root mean square deviations
of the decision function (DF) in the regions of
the main peak and side outliers.

For oc — 0, the asymptotic estimate of P, is

obtained as:

P ~ \/gﬂcF(Rﬂf))JrO(ﬂc) ~
©

z\/gﬂc l[l[ (p(< R(k)>-<R(i)>]+0(00).

i=1 %n
i=k
For o, — o, the asymptotic estimate of P,
is obtained as:

64

(y- <R(k) >)2

R(K)+ AJEJC L2
P”z 2ro ° ; 8
c R(k)-AJZ;C
(10)
n 11 1 y-<R(@)>
xi:Hl E+ET]dy.
i =k

Expressions (9) and (10) establish a
fundamental mathematical relationship between
the probability of reference point localization by
the computer vision system and the
characteristics of the decision function (DF) it
generates. These analytical relationships
numerically link the DF parameters (its
maximum variance) with the probability of
localizing the reference object.

Thus, the proposed approach for selecting the
criterion of permissible localization error of the
reference object, within the framework of
expressions (9) and (10), connects the DF value,
above which the system decides that the object is
present, with its variance and correlation
interval.

The results of the numerical evaluation of P,

under destructive effects on the viewing surface,
depending on the number of DF side outliers and
the ratio of the root mean square deviations of
the DF in the main peak region and in the side
outliers, are shown in Fig. 1.
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Fig. 1. Graph of the dependence of the
probability of localization of an object on the
number of side emissions of the decision
function and the ratio of the standard
deviations of the decision function in the
region of the main lobe and side emissions.
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From the dependence shown in Fig. 1, it is
evident that reducing the correlation interval and
the variance of the decision function (DF)
decreases the localization error of the reference
point.

The proposed approach also allows
forecasting P, at the stage of DF formation,

based on the physical properties of the reference
image (RI) through the correlation interval and
the DF formation conditions through the
variance.

Moreover, expressions (9) and (10) make it
possible to assess how detailed the RI must be or
what the minimum size of the reference object
should be to ensure the required probability of
computer vision system operation, based on the
statistical properties of the DF.

At the same time, the direct application of the
proposed approach necessitates further research
to determine the relationship between the DF and
permissible changes in the informative
parameters of the reference object under the
influence of destructive factors or anthropogenic
modifications.

3. Determination of Permissible Changes in
Robust Image Informative Features Ensuring
Computer Vision System Operability

This task was addressed through modeling in
the MATLAB software environment. Cases with
varying degrees of changes in viewing surface
(VS) images, caused by destruction or
anthropogenic alterations, were considered.
Input Data for Modeling:

1. Terrain area images were randomly
selected from Google Earth.

2. The images were converted to binary
form: black (0) corresponds to the background,
and white (1) corresponds to significant objects.

3. The influence of external random
factors, other than destructive effects causing
image noise, was not considered.

4. The impact of scale and perspective
distortions on the images was not considered.

5. Destructive effects on the reference
object resulted in changes in its area by 5%,
10%, and 15%.

6. Image comparison was performed using
an algorithm based on detection and multi-
threshold selection of the reference object in the
current image, containing multiple bright
objects.

Changes in the area of the reference regions
were studied, with the original images shown in
Fig. 2 and Fig. 7. The sections highlighted with
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rectangles were selected as the reference regions,
with their corresponding reference images
presented in Fig. 3 and Fig. 8.

Images of the reference regions with a 5%
change in area are shown in Fig. 4 and Fig. 9,
respectively.

Images of the reference regions with a 10%
change in area are shown in Fig. 5 and Fig. 10,
respectively.

Images of the reference regions with a 15%
change in area are shown in Fig. 6 and Fig. 11,
respectively.

Fig. 2. The original image of the sighting
surface with the reference area highlighted.

Fig. 4. Current image with the
anchor area area changed by 5%.
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Fig. 5. Current image with the anchor
area area changed by10%.

Fig. 9. Current image with the anchor
area area changed by 5%.

Fig. 6. Current image with the anchor
area area changed by15%.

Fig. 10. Current image with the anchor
area area changed by 10%.

Fig. 7. The original image of the sighting
surface with the reference area highlighted.

area area changed by 15%.
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Fig. 11. Current image with the anchor

As a result of comparing the reference image
(R1) shown in Fig. 2 with the current images
(CIs) having modified areas of the reference
regions, corresponding decision functions (DFs)
were constructed for the images shown in Fig. 4,
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Fig. 5, and Fig. 6, presented in Fig. 12, Fig. 13,
and Fig. 14.

The DFs obtained from the comparison of the
RI shown in Fig. 8 with the Cls shown in Fig. 9,
Fig. 10, and Fig. 11 are presented in Fig. 15, Fig.
16, and Fig. 17, respectively.

R(x

Fig. 12. The decision function for the case
of a 5% change in the area of the reference
object in the current image.

R(x)
1~

08 ~

0.6 4

0 o

Fig. 13. The decision function for the case
of a 10% change in the area of the reference
object in the current image.
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R(x)
o

0.8 4
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0 o

Fig. 14. The decision function for the case
of a 15% change in the area of the reference
object in the current image.

Fig. 15. The decision function for the case
of a 5% change in the area of the reference
object in the current image.
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R(x)

B R

Fig. 16. The decision function for the case
of a 10% change in the area of the reference
object in the current image.
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Fig. 17. The decision function for the case
of a 15% change in the area of the reference
object in the current image.

Analysis of the DF modeling results shown in
Figures 12-17 indicates that permissible changes
caused by destructive effects on the reference
object, measured by changes in its area, lie
within the range of 10-15% of its total area,
regardless of the type of viewing surface (VS).
Under such changes, side outliers appear in the
DF that are comparable in magnitude to the main
peak. These outliers are sufficiently critical for
the effective operation of UAVs under robust
changes in informative features, becoming
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particularly critical when localizing small-sized
objects.

To ensure the effective operation of UAVS
equipped with computer vision systems under
significant changes in informative features, it
becomes evident that a shift is needed from
classical approaches—which require precise
prior knowledge of the statistical characteristics
of signals and noise—toward adaptive
processing. This adaptive approach allows the
system to adjust its parameters to the changing
characteristics of input data (images) and the
external environment.

In other words, it is necessary to move from a
rigid mathematical model to a flexible approach
that compensates for emerging uncertainties,
thereby reducing anomalous errors under the
complex operating conditions of UAVS.

CONCLUSIONS

As a result of the conducted studies, the
feasibility of applying a probabilistic approach
to assessing UAV effectiveness under
destructive effects on viewing surface (VS)
objects has been substantiated. An analytical
expression was obtained for the numerical
evaluation of the probability of UAV position
determination under conditions of infrastructural
changes and destructive effects on VS objects.
The relationship between the probability of
UAV  position  determination and the
characteristics of the reference and current
images, and consequently the characteristics of
the generated decision function (DF), was
demonstrated.

A criterion for determining the permissible
localization error of the reference object was
justified. Within the probabilistic framework, it
is proposed to use a statistical probability
threshold, whereby an error is considered
permissible if the probability that the DF value
for the true UAV position exceeds the values for
objects outside the region of interest is above the
minimally required level.

A mathematical relationship between the
probability of reference object localization and
the characteristics of the generated DF was
established. Analytical relationships  were
derived for the asymptotic evaluation of object
localization probability, numerically linked to
DF parameters.

Through modeling in the MATLAB
environment, it was shown that permissible
changes in the informative features of the
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reference object, caused by destructive effects
and measured by changes in area, lie within 10—
15% of the total area, regardless of the type of
VS. Under these changes, side outliers appear in
the DF, comparable in magnitude to the main
peak.
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