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Abstract. Main objective of this study is to analyze the progression of load forecasting methodologies 

for electrical grids, with a focus on identifying trends in performance metrics such as Mean Absolute 

Percentage Error (MAPE) over time. This analysis evaluates various forecasting approaches, including 

statistical methods, artificial intelligence, fuzzy logic, ensemble methods, and hybrid systems, to un-

derstand their evolution and current state. To achieve the stated goals, the systematic review of scien-

tific studies and articles that have the necessary metrics was conducted. From them, it was determined 

which models were used and what forecasting errors corresponded to them. Also, the publications re-

viewed within this study were distributed over time to take into account the dynamics of changes in 

the results. The most important results are the obtained graphs of the dynamics of forecast of error 

changes for different models by years, as well as the possible ranges of variation of this error. The 

results show that, although increasingly complex models are being developed, their accuracy gain 

remains inconsistent in different application contexts, provided that a single-type architecture is used. 

Hybrid models demonstrate a significant increase in accuracy, and, therefore, superiority over a single-

type architecture. The significance of the obtained results is in the clear illustration of the development 

of the accuracy of forecasting models. They allow us to determine the optimal vector of evolution of 

subsequent studies, namely, what type of model should be used to forecast the grid load. This study 

proves the prospects of using hybrid methods in the area under consideration as well. 
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Prognoza sarcinilor în rețelele electrice: analiza metodelor și tendințelor lor 
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Rezumat. Obiectivul principal al acestui studiu este de a analiza și identifica progresia metodologiilor de 

prognoză a sarcinii pentru rețelele electrice, cu accent pe identificarea tendințelor în metrici de performanță, cum 

ar fi eroarea procentuală medie absolută în timp. Această analiză evaluează diverse abordări de prognoză, 

inclusiv metode statistice, inteligență artificială, logica fuzzy, metode de ansamblu și sisteme hibride, pentru a 

înțelege evoluția și starea lor actuală. Pentru atingerea scopurilor declarate, a fost efectuată o revizuire 

sistematică a studiilor și articolelor științifice care au metricile necesare. Din acestea s-a determinat ce modele au 

fost folosite și ce erori de prognoză le corespundeau. De asemenea, publicațiile revizuite în cadrul studiului au 

fost distribuite în timp -pentru a ține cont de dinamica modificărilor rezultatelor. Cele mai importante rezultate 

sunt graficele obținute ale dinamicii modificărilor erorilor de prognoză pentru diferite modele pe ani, precum și 

posibilele intervale de variație a acestei erori. Rezultatele arată că, deși sunt dezvoltate modele din ce în ce mai 

complexe, câștigul lor de precizie rămâne inconsecvent în diferite contexte de aplicație, cu condiția să fie 

utilizată o arhitectură de tip unic. Cu toate acestea, modelele hibride demonstrează o creștere semnificativă a 

preciziei și, prin urmare, superioritate față de o arhitectură de tip unic. Semnificația rezultatelor obținute este în 

ilustrarea clară a dezvoltării acurateței modelelor de prognoză. Acestea ne permit să determinăm vectorul optim 

de evoluție al studiilor ulterioare, și anume, ce tip de model ar trebui utilizat pentru a prognoza sarcina în rețeaua 

electrică. De asemenea, acest studiu demonstrează perspectivele utilizării metodelor hibride în zona luată în 

considerare. 

Cuvinte-cheie: prognoza încărcăturii, rețele electrice, analiză, sisteme fuzzy, rețele neuronale, modele hibride, 

metrici de performanță, inteligență artificială, machine learning. 
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Прогнозирование нагрузки в электрических сетях: анализ методов и их развития 

Кирик В.В., Шаталов Е.А. 

Национальный технический университет Украины «Киевский политехнический институт  

им. Игоря Сикорского», Киев, Украина 

Аннотация. Основная цель данного исследования – проанализировать развитие методологий 

прогнозирования нагрузки в электрических сетях, уделяя особое внимание выявлению тенденций в 

оценках показателей качества, например, такой как средняя абсолютная процентная ошибка во времени. 

Этот анализ оценивает различные подходы к прогнозированию, включая статистические методы, 

искусственный интеллект, нечеткую логику, ансамблевые методы и гибридные системы, чтобы понять 

их эволюцию и текущее состояние. Для достижения поставленных целей был проведен систематический 

обзор научных публикаций, имеющих необходимые метрики. Из них было определено, какие модели 

использовались и какие ошибки прогнозирования им соответствовали. Также публикации, 

рассмотренные в рамках исследования, были распределены по времени – для учета динамики изменения 

результатов. Важнейшими результатами являются полученные графики динамики изменения ошибки 

прогноза для разных моделей по годам, а также возможные диапазоны изменения этой ошибки. 

Результаты показывают, что, хотя разрабатываются все более сложные модели, их прирост точности 

остается непоследовательным в разных контекстах применения при условии использования однотипной 

архитектуры. Однако гибридные модели демонстрируют существенное увеличение точности, а значит и 

превосходство над однотипной архитектурой. Значимость полученных результатов заключается в 

наглядной иллюстрации развития точности моделей прогнозирования. Они позволяют определить 

оптимальный вектор проведения последующих исследований, а именно, какой тип модели следует 

использовать для прогнозирования нагрузки в электрической сети. Также данное исследование 

доказывает перспективность использования гибридных методов в рассматриваемой области. 

Ключевые слова: прогнозирование нагрузки, электрические сети, анализ, нечеткие системы, нейронные 

сети, гибридные модели, показатели производительности, искусственный интеллект, машинное 

обучение. 

 
 

INTRODUCTION 

Load forecasting is a cornerstone of efficient 

power grid management, influencing decisions 

from operational planning in the short term to 

infrastructure investments over extended 

horizons. The accuracy of these forecasts has 

profound implications for grid stability, 

renewable energy integration, and cost 

optimization. As the field evolves, advancements 

in computational methods and data availability 

have driven remarkable improvements in 
forecasting precision. 

Despite significant advancements, challenges 

remain in achieving reliable forecasts across 

varying time scales. Short-term load forecasting 

demands models capable of handling rapid 

fluctuations, while long-term forecasting 

requires capturing broader trends and 

seasonality. These differing goals often 

necessitate diverse modeling approaches, yet the 

fundamental methodologies be they statistical, 

artificial intelligence (AI), or hybrid-share 

notable similarities. This overlap provides a 

unique opportunity to unify the evaluation of 
these methods across forecasting horizons. 

The literature [1, 2, 3] demonstrates a rich 

evolution of load forecasting methodologies. 

Early statistical models such as ARIMA and 

polynomial regression provided foundational 
techniques for addressing forecasting challenges.  

Despite substantial advancements in load 

forecasting methodologies, there is a significant 

lack of clarity surrounding the consistency and 

reliability of reported performance results. A closer 

examination of the available literature and dataset 

information reveals considerable dispersion in 

reported metrics, particularly MAPE.  

The heterogeneity of datasets used in these 

studies further complicates the interpretation of 

results. While some models are applied to well-

prepared, extensive datasets – such as DBN with a 

MAPE of 0.21 on a curated dataset – others rely on 

limited or inadequately described datasets. For 

example, ARIMA-based models and polynomial 

regression approaches often utilize datasets 

spanning only one to two years, potentially limiting 
their predictive accuracy and generalizability. 

This dispersion of results and lack of 

standardization in dataset preparation, feature 

engineering, and evaluation criteria introduce 

doubts about the reliability of reported 

advancements. Hybrid models, often touted for 
their superior performance, exemplify this issue.  

The purpose of this study is to analyze and 

critically evaluate research trends in electrical load 
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forecasting, focusing on the methodologies used, 
performance indicators achieved, and data sets used. 

PROBLEM FORMULATION 

The evolution of load forecasting 

methodologies has been shaped by decades of 

research, with statistical methods, artificial 

intelligence, fuzzy logic systems, machine 

learning ensemble methods, and hybrid 

approaches each contributing uniquely to 

addressing the complexities of modern power 

grids. These methodologies exhibit distinct 

performance trends and dependencies on dataset 

characteristics, which are crucial for 

understanding their strengths, limitations, and 

future potential. 

Statistical methods, such as Time Series 

Regression (TSR) and ARIMA, were foundational 

in load forecasting but show limited advancements 

over time. For instance, TSR achieved a MAPE of 

6.959 when applied to hourly industrial energy 

consumption data over six weeks [34], illustrating 

the constraints of traditional statistical approaches 

in adapting to modern grid demands. These 

methods often struggle with complex, dynamic 

datasets, and their performance has remained 

largely stagnant despite advancements in 
computational capabilities. 

In contrast, AI-based models, including 

Artificial Neural Networks (ANN) and Deep 

Neural Networks (DNN), have shown gradual 

improvements, particularly when applied to 

feature-rich datasets. For example, Deep 

Learning models achieved a competitive MAPE 

of 1.00 by leveraging sensor-driven data [1], 

while DNN demonstrated adaptive learning 

capabilities with a MAPE of 0.21 in medium-

term forecasting scenarios. These advancements 

highlight the adaptability of AI methods to 

diverse forecasting challenges, though their 

performance remains highly dependent on the 
quality of the datasets. 

Fuzzy logic systems have emerged as a 

powerful alternative, particularly in handling 

non-linearity and uncertainty. Adaptive Neuro-

Fuzzy Inference System (ANFIS) have achieved 

significant accuracy improvements, with MAPEs 

as low as less than 1. Similarly, Fuzzy Neural 

Networks (FNN) with Takagi-Sugeno inference 

models reported MAPEs ranging from 1.06 to 

1.72 when trained on historical data segmented 

by day type and seasonality [93]. These results 

underscore the effectiveness of fuzzy systems in 

addressing complex forecasting scenarios. 

Dataset characteristics play a pivotal role in 

determining the performance of load forecasting 

models. Short-duration datasets often constrain 

model performance, as seen in TSR and ANN 

models trained on six weeks of data, which 

struggled to achieve low MAPEs. In contrast, 

models trained on longer datasets, such as FNN 

using seven years of historical data, achieved 

significantly lower MAPEs. Furthermore, 

feature engineering and preprocessing have 

emerged as critical factors in enhancing model 

accuracy. Models incorporating diverse 

features, such as weather patterns and industrial 

activity data, consistently outperform those 

relying on limited inputs.  

Despite these advancements, challenges persist 

in ensuring consistency and reproducibility in load 

forecasting. Dispersion highlights the dependency 

on dataset preparation and experimental conditions, 

particularly for hybrid systems that often rely on 

tailored datasets. Such reliance complicates the 

reproducibility and generalizability of reported 

outcomes, emphasizing the need for standardized 

frameworks. 

Looking ahead, the success of hybrid and 

ensemble models illustrates the potential of 

integrating diverse methodologies. By 

combining neural networks with fuzzy logic, 

hybrid models capitalize on the strengths of 

individual techniques.  

Additionally, exploring novel methodologies 

that integrate multiple approaches while 

addressing the challenges of dataset dependencies 

and reproducibility will be crucial for achieving 

breakthroughs in forecasting accuracy. Such 

advancements are essential for ensuring the 

stability and sustainability of modern power grids, 

particularly as they integrate renewable energy 

sources and face increasing demand variability. 

In general, the classification of electrical load 

forecasting by modeling methods can be 

presented structurally, as shown in Fig. 1. 

OVERVIEW OF FORECAST METHODS 

AND MODELS  

A detailed review of a number of published 

studies reveals clear patterns and recurring themes 

in the field of load forecasting. Studies have been 

categorized based on their main contribution and 

methodology, and similar approaches have been 

grouped together for clarity. 
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Fig. 1. Classifications of load forecasting according to modeling techniques. 

 

- AI methods [1-49] have transformed 

load forecasting by providing advanced solutions 

for analyzing non-linear relationships and 

improving prediction accuracy. These methods 

can be broadly categorized into several subtypes, 

each tailored to address specific aspects of 

forecasting challenges (fig. 2.). 

One prominent subcategory is Deep 

Learning Models, which have proven highly 

effective for processing large datasets and 

identifying complex patterns. Their ability to 

model non-linear dependencies has made them a 

cornerstone for load forecasting, particularly in 

scenarios requiring high accuracy and 

adaptability. These models have demonstrated 

exceptional performance and low RMSE values, 

highlighting their precision and versatility across 

various forecasting tasks.  

Deep Neural Networks (DNNs), while 

closely related to Deep Learning Models, are 

classified separately due to their broader 

applicability and focus on hierarchical data 

representations. DNNs have achieved MAPE 

values ranging from 3.45 to 8.85, depending on 

the complexity of the dataset and forecasting 

horizon. These models are particularly effective 

in tasks requiring high-level abstraction and 

complex feature extraction. 

Recurrent Neural Networks (RNNs), 

another major subcategory, are specifically 

designed to handle sequential data. Their unique 

architecture allows them to capture temporal 

dependencies, making them particularly suitable 

for forecasting tasks where historical trends and 

patterns play a critical role. LSTM, a popular 

RNN variant, has achieved MAPE values as low 

as 0.0535, demonstrating its ability to handle 

multi-temporal and short-term load forecasting 

with exceptional accuracy. 

 
Fig. 2. Classifications of Artificial Intelligence Methods. 
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Table 1 

AI Methods data 
 

Ref. 

№ 
Year Model Name Performance 

1 

2013 IoT-DL MAPE: 1.00 

2019 DBN MAPE: 0.21 

2020 LSTM-RNN MAPE: 0.0535 

2019 SDA MAPE: 2.47 

2021 FCRBM MAPE: 1.43 

2020 DNN MAPE: 9.77 

1978 LSTM-RNN MAPE: 8.18 

2017 DNN MAPE: 8.84 

2007 LSTM-RNN MAPE: 22 

2019 SVM MAPE: 1.790 

2019 ANN + RBF MAPE: 1.950 

2 

2020 DBN MAPE: 3.864, RMSE: 341.601 

2005 SOM MAPE: 1.93 

2012 SOM MAPE: 2.32 

2019 R-ANN MAPE: 1.57 

3 

2019 KP-SVR MAPE: 1.79 

2011 ANN-MLP MAE: 0.01, MAPE: 0.03 

1995 Adaptive NN MAPE: 6 

1998 ANN-Input ID MAPE: 1.67 

2007 Autonomous NN MAPE: 1.75 

2012 SOM-STLF MAPE: 2.18 

2015 SVR MAPE: 1.78 

2016 DCANN + UDCANN MAPE: 8.28 

2016 BP-ANN MAPE: 1.65 

2016 NN-LV MAE: 3.63, MAPE: 10.3 

2017 MLP-Sectors MAPE: 1.41 

2019 Multi-scale CNN MAPE: 3.74 

2020 MCRN + k-d Tree MAPE: 4.59 

2021 Adaptive RNN MAPE: 0.24 

2002 ANN MAPE: 2.87 

2013 LS-SVM MAPE: 1.76 

2015 LSSVM MAPE: 1.07 

2017 SDA MAPE: 2.47 

2019 DRL MAPE: 3.47 

2021 DBNN MAPE: 2.05 

4 1988 SLA Forecasting MAPE: 3 

5 1995 ANN MAPE: 2.66 

6 
1997 Cascades ANN MAPE: 4.197 

1997 ANN MAPE: 2.7 

7 1997 ANN + Deficit Module MAPE: 3-5 

8 1997 
ANN: Linear, RBF, 

MLP, Elman 
MAPE: 3.03-4.04; 2.95-4.04; 2.93-3.4; 2.87-3.6 

9 1997 ANN MAPE: 1.86 

10 1998 MLP 
Weekly MAPE range: ~3.01-5.92; Best weekday 

(Tuesday): MAPE ~0.2-2.0. 

11 1998 MLP + ANN MSE: 1.04 

12 2000 FFNN MAPE: 1.1-3.2 
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Ref. 
№ 

Year Model Name Performance 

13 2000 FNN + BP MAPE: 1.52-1.7 

14 2001 SVM + RBF MAPE: 1.95 

15 2004 ANN MAPE: 1.89 

16 2005 MLP-SPF MAPE: 0.86-1.4 

17 2009 ANN MAPE: 1.585-5.747 

18 2010 ANN MAPE: 0.10-1.25 

19 2010 PNN MAPE: 1.0419-1.5373 

20 2010 ANN MAPE: 2.81, MAE: 168.04 MW 

21 

2011 FFNN MAPE: 3.5 

2011 Elman NN MAPE: 1.3 

2011 RBFNN MAPE: 1.3 

22 2011 ANN MAPE: 4.11-14.46 

23 2011 BPN MAPE: 1.30, MAXPE: 2.27, SDAPE: 0.59 

24 

2012 SVR MAPE: 3.6 

2012 DESVR MAPE: 1.6 

2012 BPNN MAPE: 1.5 

25 2013 MLP MAPE: 2.47 

26 2013 RBFNN MAPE: 1.86 

27 

2013 ANN 10N MAPE: 5.74-7.39 

2013 ANN 20N MAPE: 6.16-9.28 

2013 ANN 30N MAPE: 7.62-8.5 

28 

2014 GRNN RMSRE: 0.53 

2014 SVM RMSRE: 3.16 

2014 BP RMSRE: 2.59 

29 
2014 ANN MAPE: 1.252 

2014 GMDH MAPE: 0.959 

30 2014 ANN MAPE: 4.20-23.5 

31 2015 ANN MAPE: 1.89-2.78 

32 

2015 BP MAPE: 3.43 

2015 BP 2xhidden layer MAPE: 3.97 

2015 GABP MAPE: 3.97 

2015 RBF MAPE: 3.46 

2015 GRNN MAPE: 4.72 

33 2016 ANN MAE: 1,936; MAPE: 3.293; RMSE: 2,035 

34 
2016 DNN MAPE 3.2. RRMSE: 4.1 

2016 SNN MAPE 4.36. RRMSE: 5.86 

35 
2016 DNN + ReLU MAPE: 3.45-8.85. RMSRE: 4.36-10.69 

2016 DNN + RBM MAPE: 3.20-8.84. RMSRE: 4.10-10.62 

36 
2016 NN MAPE: 6.29-10.465  

2016 Decision Tree MAPE: 5.204-12.309 

37 

2016 D-PNN MAPE: 1.56 

2016 ANN MAPE: 1.82 

2016 SVM MAPE: 2.15 

2016 GMDH MAPE: 1.87 

38 2017 LSTM-RNN MAPE: 8.18-9.14 

39 2017 LSTM MAPE: 21.99 

40 2019 MLP MAPE: 1.125 -3.4 

41 

2019 Stacked LSTM MAPE: 6.407 

2019 SVR MAPE: 6.840 

2019 BPNN MAPE: 6.805 
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Ref. 
№ 

Year Model Name Performance 

42 

2019 BP MAPE: 4.44-6.42 

2019 RBF MAPE: 1.69-3.69 

2019 Elman NN MAPE: 2.88-5.30 

2019 LSTM MAPE: 1.55-3.4 

43 2019 LSTM MAPE: 0.88-1.15 

44 

2020 GRU MAPE: 4.6377. RMSE: 1910.02 

2020 CNN MAPE: 3.3890. RMSE: 1406.77 

2020 BPNN MAPE: 4.4681. RMSE: 1841.63 

45 2020 SVR MAPE: 6.93 

46 2020 LSTM-RNN MAPE: 1.49-1.52 

47 

2020 LSTM 
Single-step Forecasting: MAPE: 1.52. Multi-step 

Forecasting (24-hour horizon): MAPE: 4.79 

2020 GRNN 
Single-step Forecasting: MAPE: 3.05. Multi-step 

Forecasting (24-hour horizon): MAPE: 5.33 

2020 ELM 
Single-step Forecasting MAPE: 3.44. Multi-step 

Forecasting (24-hour horizon): MAPE: 6.86 

48 2020 LSTM MAPE: 0.073 

 

Probabilistic Neural Networks (PNNs) 
stand out for their adaptability to dynamic 

environments. Their probabilistic framework 

enables them to handle uncertainties in 

forecasting, providing reliable predictions even 

under fluctuating conditions. For example, PNNs 

such as Deep Belief Networks (DBNs) have 

achieved MAPE values as low as 0.21, 

showcasing their precision and resilience in 

unpredictable scenarios. 

Convolutional Neural Networks (CNNs), 

traditionally used in image and spatial data 

analysis, have been effectively adapted to load 

forecasting. CNNs have achieved MAPE values 

as low as 3.39%, demonstrating their capability to 

improve forecasting accuracy in scenarios 
involving complex interactions between variables. 

Support Vector Machines (SVMs) are widely 

applied in both regression and classification tasks 

within load forecasting. By leveraging various 

kernel functions, SVMs excel at mapping data into 

higher-dimensional spaces, enabling precise 

predictions. Reported MAPE values for SVMs are 

around 1.79, reflecting their effectiveness in 

diverse forecasting applications. 

Artificial Neural Networks, which encompass 

traditional feedforward architectures, remain 

fundamental in AI-based load forecasting. Their 

flexibility and simplicity have made them a reliable 

choice for many applications, with performance 

metrics such as MAPE values as low as 1-2% in 

medium-term forecasting scenarios. ANNs 

continue to be foundational in the development of 
more advanced hybrid models. 

Finally, Self-Organizing Maps (SOMs) 

specialize in clustering and visualization, playing a 

crucial role in exploratory analysis. By segmenting 

load patterns, SOMs help uncover hidden 

structures in the data, with MAPE values reported 

around 1.93 to 2.32, making them valuable tools 

for preprocessing and improving the organization 
of large datasets. 

Together, these subcategories of AI-based 

methods form the backbone of modern load 

forecasting techniques. Their collective 

strengths—ranging from handling sequential and 

spatial data to adapting to uncertainty and 

uncovering hidden patterns—enable energy 

providers to meet the growing complexity of 

forecasting tasks with improved precision and 
reliability. 

 Computational Intelligence (CI) [2, 3] 

methods remain one of the least widely adopted 

approaches in load forecasting when compared 

to AI and Fuzzy Logic Methods. While CI 

methods, such as Evolutionary Algorithms, 

Swarm Intelligence, and Metaheuristics, offer 

robust tools for optimization and exploration of 

complex solution spaces, they are not as 

commonly implemented for direct load 

prediction. This distinction arises from the 

inherent focus of CI methods on optimization 

rather than forecasting, positioning those more as 

auxiliary tools than standalone solutions. 

One of the primary reasons for the limited 

adoption of CI methods is their design 

philosophy. Techniques like Genetic Algorithms 

(GA) and Particle Swarm Optimization (PSO) 
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excel in optimizing parameters or solving multi-

objective problems but lack inherent capabilities 

for time-series prediction.  

As a result, these methods are typically 

integrated into hybrid models where they optimize 

parameters for statistical or AI-based forecasting 

methods. For instance, a Hybrid Genetic 

Algorithm (HGA) can optimize the 

hyperparameters of Support Vector Machines 

(SVM) or ANN, enabling these predictive models 

to achieve higher accuracy. However, this reliance 

on hybridization adds complexity, which can 

deter their widespread use in practical 
applications. 

 

Table 2 

CI Methods data 
 

Ref. 
№ 

Year Model Name Performance 

2 

2002 AIS MAPE: 2.038 

2013 MGGP MAPE: 1.5716 

2002 AIN MAPE: 2.038 

3 

2003 GA MAPE: 1.56 

2009 HGA RMSE: 7.73, MAPE: 0.76 

2018 Grasshopper MAPE: 1.4. 

2020 E-ELITE MAPE: 1.18 

 

 
Fig. 3. MAPE Trends over Years for Artificial Intelligence methods. 

 

Another challenge associated with CI 

methods is their limited interpretability. While 

AI models, such as Neural Networks, often face 

similar criticisms for being "black boxes," CI 

methods are particularly abstract in their outputs, 

as they focus solely on providing optimized 

solutions. This lack of transparency reduces their 

appeal in scenarios where interpretability is 
essential for decision-making. 

Overall, CI methods occupy a niche role in 

load forecasting, primarily as tools for fine-

tuning and optimizing other forecasting 

methodologies. Their potential remains 

significant, particularly in hybrid applications 

where they complement the strengths of AI or 

statistical models. Great example of this is [49] 

where GA used in microgrids for battery load and 

scheduling forecasting. Detailed methodology 
described in [49].  

Fuzzy Logic Systems [2, 3, 50-66] are 

widely recognized for their ability to manage 

uncertainty and imprecision in load forecasting, 

offering a flexible alternative to traditional 

deterministic methods. By leveraging 
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membership functions and rule-based reasoning, 

these systems excel in applications where input 

data may be incomplete, noisy, or ambiguous. 

Recent studies have highlighted a diverse 

range of applications and innovations in Fuzzy 

Logic Systems. In [52] demonstrated the 

effectiveness of fuzzy clustering combined with 

splines, achieving a MAPE of 1 and reducing 

errors in load curve modeling. Similarly, [58] 

employed fuzzy linear regression to model 

uncertainty in electricity demand, achieving a 

MAPE of 3.68. Another notable contribution is 

the fuzzy logic-based similar-day approach 

outlined in [59], which achieved a highly 
competitive MAPE of 0.85-9.4.  

Improvements in Type-1 and Type-2 Fuzzy 

Logic Systems have further extended their 

capabilities. Type-1 and Type-2 Fuzzy Logic 

Systems (IT1FL and IT2FL) for daily load 

forecasting, reporting MAPE values of 1.6078 

and 1.3445 [63], respectively. These 

advancements demonstrate the effectiveness of 

Type-2 systems in handling variability and noise 
in complex forecasting environments.  

Several studies have also integrated 

exogenous variables to enhance the predictive 

power of fuzzy systems. In [50] introduced a 

fuzzy logic-based approach combining similar-

day analysis with exogenous factors like weather 

data, achieving a MAPE of 2.53. Another study, 

combined fuzzy logic with weather data to 

improve long-term load forecasting, 

demonstrating the adaptability of fuzzy systems 
in dynamic environments [53]. 

Clustering and regression techniques have also 

been widely explored [54]. Fuzzy time series 

analysis, reporting MAPE values near 3, 

highlighting the versatility of fuzzy approaches in 

capturing temporal patterns. 

The Mamdani fuzzy logic model [62], 

incorporated weather data into its rule-based 

framework, achieving a MAPE of 0.5-1 for 

short-term forecasts. Meanwhile in a multi-TSK 

(Takagi-Sugeno-Kang) [66] predictor model, 

reporting an impressive Mean Relative Error 
(MRE) of 1.2296.  

These advancements underscore the 

adaptability of Fuzzy Logic Systems across 

various forecasting scenarios. However, 

challenges persist. The design and tuning of 

fuzzy membership functions, rule bases, and 

input variables often require significant domain 

expertise and computational resources. 

Additionally, the performance of fuzzy systems 

is heavily dependent on the quality of input data 

and the comprehensiveness of the rule base. 

Despite these, Fuzzy Logic Systems remain a 

valuable tool in load forecasting, particularly in 

applications where interpretability and flexibility 

are critical. Their ongoing refinement, as 

demonstrated by recent research, ensures that 

they will continue to play a significant role in 

addressing the complexities of energy demand 
forecasting in the future. 

 

Table 3 

Fuzzy Logic Systems data 
 

Ref. 
№ 

Year Model Name Performance 

2 
2017 Fuzzy Model MAPE: 2.3 

2016 Fuzzy-LTLF MAPE: 6.9 

3 

2009 Fuzzy Controller MAPE: 2.2 

2014 Fuzzy Regression MAPE: 3.68 

2018 Adaptive Fuzzy MAPE: 0.13 

2005 Fuzzy Logic MAPE: 1.71 

2020 Fuzzy Clustering MAPE: 3.66 

50 
1998 Fuzzy Similarity Analysis MAPE: 2.53 

1998 Fuzzy Previous Day + Similar Day MAPE: 4.22 

51 1999 Simplified Fuzzy MAPE: 3.809 

52 2003 Fuzzy Clustering + Splines MAPE: 1.76 

53 2006 Fuzzy Linear + Weather Factors MAPE: 0.7 

54 2006 Fuzzy Logic MAPE: 3 

55 2010 GA + TSK MAPE: 0.36 

56 2010 GA + TSK MAPE: 2.04 

57 2010 Fuzzy AHP MAPE: 0.87-2.30 
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Ref. 
№ 

Year Model Name Performance 

58 2011 Fuzzy Linear Regression MAPE: 3.68 

59 2012 Fuzzy Similar Day FISDM MAPE: 0.84-9.37 

60 2015 Fuzzy Time Series MAPE: 2.6-5.1 

61 2016 Fuzzy Logic Model MAPE: 6.98-8.36. APE: 23.33 

62 2017 HFCM-TM MAPE: 0.478-1.048 

63 
2018 IT1FL MAPE: 1.6078 

2018 IT2FL MAPE: 1.3445 

64 2018 FL + Gaussian Membership MAPE: 1.51 

65 2018 Fuzzy Logic System MAPE: 0.6244 

66 2019 Multiple TSK Predictors MAPE: 1.2296. RMSE: 7.351 

 

 
Fig. 4. Classifications of Fuzzy Logic Systems. 

 

- Ensemble methods [1, 3, 67-69] have 

become a cornerstone of modern load forecasting 

due to their ability to improve prediction 

accuracy and robustness by combining multiple 

models. By leveraging the strengths of diverse 

base predictors, ensemble techniques reduce 

variance, minimize bias, and enhance the 

stability of forecasts. This section focuses 

exclusively on ensemble methods as standalone 

approaches, excluding their hybrids with other 
methodological frameworks. 

Bagging (Bootstrap Aggregating) is a widely 

adopted ensemble technique that trains multiple 

models on different subsets of the data and 

combines their predictions to reduce variance and 

prevent overfitting. Within the dataset, Bagging 

Neural Networks [69] demonstrated impressive 

performance, achieving a MAPE between 1.42 

and 1.50. Similarly, Bagged Regression Trees 

exhibited a slightly higher MAPE range of 1.93 to 

2.44, highlighting the method's versatility across 

different predictive models. Bagging-based 

methods are particularly effective in short-term 

load forecasting, where data variability can 

significantly impact prediction accuracy. 

Boosting algorithms iteratively refine weak 

learners by correcting their previous errors, 

resulting in a strong predictive model. Boosted 

Regression Trees [1] exemplify the power of 

boosting in load forecasting, with RMSE values 

of 0.1389 and 0.1734 for predictive and 

corrective components, respectively. Another 

notable study on BoostNN [69] combined 

boosting with neural networks, achieving a 

MAPE of 1.46 to 1.47. These results underscore 

the effectiveness of boosting in capturing 

complex, nonlinear patterns in load data while 
minimizing bias and improving accuracy. 

Stacking ensembles combine the outputs of 

multiple base models using a meta-model trained 

to optimize the final prediction. The COSMOS 

ensemble [3] introduced a novel stacking 

framework, achieving a MAPE of 6.97. This 

approach demonstrates the potential of stacking in 

integrating diverse algorithms, enabling the model 

to harness complementary strengths of base 

predictors. While stacking is computationally 

intensive, its ability to enhance forecasting 

accuracy makes it a valuable approach in 
scenarios requiring robust predictions. 

The rise of deep learning has inspired the 

development of ensemble methods incorporating 

advanced neural networks. Deep Belief Network 

(DBN) Ensembles from [1] achieved a MAPE of 

5.93, providing adaptive forecasting capabilities 

that leverage hierarchical feature extraction. 
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Similarly, Ensemble LSTM models combined 

ARIMA, SVR, and LSTM networks to achieve 

superior performance in capturing long-term 

dependencies in load patterns. These deep learning 

ensembles excel in addressing the complexity of 

real-world load data, particularly in dynamic and 

high-dimensional forecasting scenarios. 

 

 

Table 4 

Ensemble Methods data 
 

Ref. 
№ 

Year Model Name Performance 

1 2016 DBN Ensemble MAPE 5.93 

3 

2020 COSMOS Ensemble MAPE: 6.97 

2020 Ensemble HMMs MAPE: 7.07 

2018 ML Ensemble RMSE: 0.03, MAPE: 15.7 

67 2015 BagNN MAPE: 1.5-1.75 

68 2017 BoostNN MAPE: 1.42-1.43 

69 

2020 Bag-BoostNN MAPE: 1.35-1.43 

2020 BagNN MAPE: 1.42-1.5 

2020 BoostNN MAPE: 1.46-1.47 

2020 BagRT MAPE: 1.93-2.44 

 

 
Fig. 5. MAPE Trends over Years for Fuzzy Logic Systems. 

 

Ensembles of Hidden Markov Models 

demonstrated their utility in forecasting by 

capturing temporal dependencies and probabilistic 

transitions in load data. With a reported MAPE of 

7.07, these models are particularly well-suited for 

medium-to long-term forecasting applications, 

where temporal correlations and uncertainty play a 

significant role. 

An analysis of ensemble methods over the 

past decade reveals a clear trend of decreasing 

MAPE values, reflecting continuous 

advancements in ensemble techniques and their 

application. Early models such as COSMOS [3] 

reported MAPE values near 7, while more recent 

studies like Bagging Neural Networks and 

BoostNN [69] achieved MAPEs below 1.5. This 

improvement highlights the increasing 

sophistication of ensemble algorithms and their 

capacity to adapt to complex data environments. 

Despite these advancements, ensemble 

methods as standalone approaches have certain 

limitations compared to their hybrid 
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modifications. While hybrid models that 

combine ensembles with other approaches, such 

as statistical techniques, neural networks, or 

fuzzy logic systems, have demonstrated 

exceptional accuracy and robustness, pure 

ensemble methods often fall short in capturing 

the full complexity of load data. This 

comparative weakness results in a smaller pool 

of non-hybrid ensemble applications in the field. 

Their reliance on combining similar predictive 

models inherently limits their ability to address 

diverse and nonlinear dependencies present in 

load forecasting tasks. 

Table 5 

Statistical Methods data 
 

Ref. 

№ 
Year Model Name Performance 

3 

2001 ARIMA + Operator Estimation MAPE: 1.98 

2011 MA-C-WH MAPE: 2.88 

2018 SARIMAX MAPE: 0.7 

2008 Bayes MAPE: 1.61 

2005 GARCH MAPE: 9 

2009 GARCH MAPE: 2.56 

1998 NPR RMSE: 2.64, MAPE: 3.57 

2010 LSWR MAPE: 1.34 

2016 Straightforward Models MAPE: 1.35 

2020 PAR MAPE: 1.62 

2006 Euclidean Similarity MAPE: 1.3 

2012 Grey-STLF MAPE: 3.27 

2015 Pattern-Based LF MAPE: 2.97 

2017 South Korea Techniques MAPE: 2.13 

2020 QRF + Temp/Humidity MAPE: 1.37 

2005 Periodic TS MAPE: <3 

2013 Seasonal-Trend MAPE: 2.09 

2016 Time-series LF RMSE: 0.03, MAPE: 14.8 

8 1997 AR, ARX, ARIMA, ARMAX MAPE: 3.60-4.07. RMSE: 20.84 

70 1997 Regression + Weather Factors 
MAPE: 2.  

Error standard deviation: 1.2-5.8 

71 1997 Regression Models (Hourly) MAPE: 2.45-4.49. 

12 2000 ARIMAX MAPE: 1.1-3.3. 

18 2010 ARIMA MAPE: 2.62-5.27, ANFIS: 10.21-18.72 

20 2010 SAM MAPE: 1.88, MAE: 110.21 MW 

22 
2011 ARIMA MAPE: 13.05-19.13 

2011 AR MAPE: 4.26-13.26 

23 
2011 Lifting Scheme + ARIMA MAPE: 0.87, 0.66 

2011 ARIMA MAPE: 1.03, 0.92 

72 2011 Moving Average 
MAPE: 3.84, Mean Error: 30.55 MW. 30-

day Mean Error: 174.47 MW 

73 2012 SPAM MAPE: 1.88. MAE(MW): 110.21 

74 2012 SARIMA MAPE: 1.5 

75 2013 OLS_LR MAPE:  0.389, 0.918, 5.360, 4.677, 2.377 

29 2014 HWT MAPE:  2.045 

76 

2014 MT (Middle term) MAPE: 8 

2014 ST (Short term) MAPE: 5 

2014 MTD (MT detrending) MAPE: 6 

33 2016 ATSR 
MAE: 3,894; MAPE: 6.959; RMSE: 

4,127 

34 2016 ARIMA MAPE 9.97. RRMSE: 15.61 
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Ref. 
№ 

Year Model Name Performance 

2016 DSHW MAPE 3.65. RRMSE: 5.47 

77 2016 PLSR MAPE: 1.34 

77 2016 PCR MAPE: 1.44 

78 2018 SARIMA MAPE: 3.91 

79 2019 ARIMAX MAPE: 2.86 

80 
2019 ARIMA MAPE: 9.047, 10.787 

2019 SARIMA MAPE: 9.532, 10.324 

45 
2020 MLR MAPE: 6.9 

2020 FIR MAPE: 7.86 

46 2020 KSLF MAPE: 1.99-2.27 

69 2020 ARMA MAPE: 2.21 

81 
2020 ARIMA MAPE: 13.73. RMSE: 190 

2020 SARIMA MAPE: 10.7. RMSE: 200 

82 

2023 GLMLF-B 
MAPE: 3.73, MAE: 210 MW, RMSE: 

249.74 MW 

2023 GAMLF-SL 
MAPE: 2.18, MAE: 123 MW, RMSE: 

148 MW 

2023 GAMLF-SLE MAPE: 2.004-2.58 

 

 
Fig. 6. MAPE Trends over Years for Ensemble methods. 

 

- Statistical methods [3,8,12,18,20,22, 

23,29,33,34,45,46,69-82] have historically been 

the cornerstone of load forecasting, providing 

foundational techniques for time-series analysis 

and prediction. These methods are based on 

mathematical modeling and have long been 

favored for their simplicity, interpretability, and 

computational efficiency. Widely applied 

techniques such as ARMA, ARIMA, and 

SARIMA (Seasonal ARIMA) have formed the 

basis for many forecasting systems, particularly in 

scenarios where the relationships between features 
are relatively straightforward and stationary. 

Articles reveals the extensive application of 

statistical methods in load forecasting, spanning 

several decades. Early models, such as ARMA 

combined with Polynomial Regression [3] and 

Weighted Recursive Least Squares (WRLS), 

were among the first attempts to adapt these 

techniques for dynamic and online forecasting 
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scenarios. These models performed effectively in 

capturing short-term temporal patterns, with 

early implementations achieving satisfactory 

performance metrics, including low MAPEs. For 

instance, ARIMA models with operator 

estimation achieved a MAPE of 1.98, 

demonstrating the adaptability of statistical 

methods to specific problem domains. 

Over time, advancements such as SARIMA 

models [74,81] have enabled better handling of 

seasonality in load data. These models, which 

explicitly incorporate periodic components into 

their structure, have shown strong performance 

in forecasting daily and hourly loads, with 

MAPE values as low as 0.7–1.88. Additionally, 

approaches like Multivariate Adaptive 

Regression Splines introduced non-linear 

regression capabilities, further expanding the 

applicability of statistical methods to more 

complex forecasting tasks. 

Despite these advancements, statistical 

methods face inherent limitations in their ability 

to process a large number of features. These 

models generally assume linearity and 

stationarity, which makes them less effective in 

capturing non-linear or dynamic patterns that are 

increasingly prevalent in modern energy systems. 

Furthermore, the need for extensive preprocessing 

such as deseasonalization and detrending adds 

complexity to their implementation, particularly 

when dealing with high-dimensional datasets or 

incorporating external factors like weather or 
socioeconomic variables. 

 
 

 
Fig. 7. MAPE Trends over Years for Statistical methods. 

 
An analysis of the dataset indicates a notable 

trend in the performance of statistical methods 

over the years. While MAPEs reported in early 

studies were often low, this can be attributed to 

the simplicity of the datasets and limited scope 

of those studies. As the volume of research has 

grown and datasets have become more complex, 

MAPEs have generally increased. However, the 

overall trend in MAPE values suggests that 

statistical methods have largely maintained their 

performance levels over time. This stability 

reflects the maturity and reliability of these 

approaches, even as the complexity of 
forecasting challenges has evolved. 

- Hybrid methods [1-3,15,17,18,20,33, 

35,43,44,48,83-125] represent the most significant 

and diverse category in load forecasting research, 

combining strengths from multiple methodologies 

to address the challenges of modern energy 

systems. By integrating techniques such as AI, 

Fuzzy Logic, statistical models, and signal 

processing, hybrid models offer unparalleled 

flexibility, adaptability, and accuracy. One of the 

defining advantages of hybrid methods is their 

flexibility. By combining complementary 

approaches, hybrid models overcome the 

limitations of individual methods.  
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For instance, statistical models like ARIMA 

excel in capturing temporal dependencies but 

struggle with non-linearities, which hybrid 

approaches address through integration with 

machine learning or optimization techniques. A 

notable example is ARIMA + K-means 

Clustering, which leverages clustering to refine 

ARIMA predictions, achieving a MAPE of 5.1. 

Hybrid methods have also demonstrated 

substantial improvements in accuracy, particularly 

through the integration of AI and Fuzzy Logic. 

Recent advancements include models like LSTM-

RNN + CNN, which combine the temporal 

strengths of recurrent neural networks with the 

spatial feature extraction capabilities of 

convolutional networks, achieving a MAPE of 

1.34. Similarly, SAE + ELM (Stacked 

Autoencoders + Extreme Learning Machines) 

reported an MRE of 2.92, showcasing the ability 

of hybrid AI models to handle high-dimensional 

and dynamic datasets.  

 

Table 6 

Hybrid Methods data 
 

Ref. 

№ 
Year Model Name Performance 

1 

2020 EMD + DL Ens. MAPE 3.00 

2020 LSTM-RNN + CNN MAPE 1.34 

2015 CNN + LSTM MAPE 10.16 

2017 EWT + LSTM + Elman MAPE: 10.93 

2019 ANFIS MAPE: 2.876 

2 

2014 FCM + RBF MAPE: 4.04 

2018 ACO + GA Fuzzy MAPE: 3.9 

2013 SVM + FOA MAPE: 3 

2009 GA + SVR 
MAPE: 0.76; RMSE: 7.73;  

Max Error: 20.88 

2014 SVR + FA MAPE: 1.8051 

2016 SVM + HS MAPE: 4.579 

2016 SVM + FOA MAPE: 3.679 

2009 SVM + GA MAPE: 0.76 

2017 SVM + PSO MAPE: 1.92 

2016 SVM + ABC MAPE: 0.5268 

2005 SVM + SA MAPE: 1.76 

2013 ANN + FOA MAPE: 1.149; MSE: 1.421 

2014 K-means + ANN 
MAPE: 15.34 (Data Set A),  

16.69 (Data Set B) 

2002 ANN + AIS MAPE: 2.52 

2017 WNN + Pre-filtering MAPE: 2.41 

2013 ANN + FOA MAPE: 1.149 

2016 ANN + FA MAPE: 1.1808 

2013 ANN + CT MAPE: 0.4935 

2014 ANN + NFIS MAPE: 0.000396 

2010 ANN + AIS MAPE: 2.457 

2015 ANN + WT MAPE: 1.111 

2009 ANN + PSO MAPE: 1.9882 

2018 ANN + GA MAPE: 0.020 

2020 EMD + PSO + SVR 
MAPE: 2.7510; RMSE: 0.0595;  

MAE: 0.0414 

2016 GHSA + FTS + LS-SVM 
MAPE: 3.709; MAE: 14.358;  

RMSE: 18.180 

2018 GA + NARX 
MAPE: 1.12; RMSE: 1.39;  

Variance: 0.00036 
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Ref. 
№ 

Year Model Name Performance 

2018 EMD + KF + BA-SVM MAPE: 1.9052 

3 

2013 ARMA + GARCH RMSE: 7.4, MAE: 0.2, MAPE: 14.5 

2000 ANN + Non-linear MAPE: 0.8 

2020 ARIMA + K-means MAPE: 5.1 

2012 SARIMA + PSO RMSE: 4.9, MAPE: 2.19 

2013 SARIMA + SVM RMSE: 9.4, MAPE: 2.73 

2008 HSPO + ARMAX MAPE: 1.06 

2010 ARMA + GARCH + Wavelet MAPE: 1.16 

2018 Non-linear + TS MAPE: 0.81 

2002 MLP + SOM MAPE: 1.15 

2009 NN + PSO MAPE: 1.98 

2009 NN + CGA MAPE: 1.46 

2013 SVR + DEKF + RBFNN MAPE: 0.6 

2013 MFES + EMD MAPE: 2.42 

2016 WT + Ensemble MAPE: 2.02 

2017 EMD + DL MAPE: 0.67 

2018 EV Impact Model MAPE: 4.53 

2018 SSA + Reconstruction MAPE: 0.59 

2019 Copula + DNN MAPE: 2.36 

2019 MOFTL + ANN MAPE: 4.59 

2019 BRNN + DBN RMSE: 28.5, MAPE: 1.95 

2019 OP-ELM + LSTM RMSE: 0.06, MAE: 0.05, MAPE: 0.13 

2020 MIMO + LSSVM MAPE: 2.10 

2020 FFNN + Clustering MAPE: 7.00 

2020 DBM + RBM MAPE: 3.86 

2020 Fuzzy Clustering + K-means MAPE: 1.63 

2004 Hybrid STLF RMSE: 0.62, MAPE: 0.43 

2006 Hybrid FNN MAPE: 1.96 

2008 ANN + Fuzzy + ARMA MAPE: 1.85 

2010 SVM + ACO MAPE: 1.98 

2013 WT + ANN MAPE: 1.60 

2013 CB-FWNN RMSE: 3.31, MAPE: 0.87 

2014 WT + GP RMSE: 1.96, MAPE: 3.12 

2015 ANN + SSA-SVR MAPE: 0.19 

2016 ELM + LM MAPE: 0.21 

2016 Two-stage Adaptive MAPE: 1.64 

2016 ANN + Clustering MAPE: 3.5 

2016 Seasonality + ANN MAPE: 0.85 

2016 EMD + PSO + SVR RMSE: 0.06, MAE: 0.04, MAPE: 2.75 

2017 FFNN + PSO MAPE: 1.41 

2017 GNN + WD-ELMAN MAPE: 2.4 

2018 RF + EEMD MAPE: 4.45 

2018 3-Stage Hybrid MAPE: 17.6 

2018 2-Step Optimization MAPE: 2.53 

2018 DWT + EMD + RVFL MAPE: 2.08 

2018 Multiple Hybrids MAPE: 1.91 

2019 LSTM + CLD MAPE: 3.38 

2019 GA + PSO + BPNN MAPE: 1.25 

2019 PSO + GSA MAPE: 0.79 

2019 EEMD + ELM + GOA MAPE: 0.46 
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Ref. 
№ 

Year Model Name Performance 

2019 GA + PSO + ANFIS MAPE: 6.78 

2020 CEEMD + SSA MAPE: 1.74 

2020 Hybrid SVM MAPE: 0.04 

3 

2020 IAGA + SVR MAPE: 20.4 

2020 Wavelet + NN MAPE: 1.52 

2020 PSO + ANFIS MAPE: 9.86 

2020 EGA + STLF MAPE: 3.06 

2021 Wavelet + LSTM RMSE: 0.93, MAPE: 2.67 

2021 FCM + RF + DNN RMSE: 0.03, MAE: 0.08. 

2021 CNN + BiGRU RMSE: 4.22, MAPE: 5.08 

2022 TCN + DenseNet RMSE: 0.91, MAE: 0.87. 

2022 WNN + SAMF RMSE: 0.79, MAPE: 1.08 

2023 HFSM + LSTM MAPE: 2.21 

83 1994 Hybrid Fuzzy-NN MAPE: 0.65, 0.97, 1.22 

84 1998 ARTMAP MAPE: 6.5 

85 1998 FNN + TS Inference MAPE: 1.67 

86 1998 ANN + GA MAPE: 3.83 

87 1998 NNIC MAPE: 1.72-2.41 

88 2000 Adaptive Load Model MAPE:5.07 

15 
2004 AIFNN MAPE: 1.619 

2004 GA + ANN MAPE: 1.837 

89 2004 FNN MAPE: 3.5 

90 2006 HFNNs MAPE: 1.3024 - 5.3129 

91 2008 Fuzzy-Neural MAPE: 3.5 

92 2008 ANFIS 
MAPE: 0.66, 2.21, 1.03, 1.87, 0.04, 0.19, 

0.99, 1.32 

17 2009 Mamdani Fuzzy Logic +ANN MAPE: 1.549-2.231 

18 2010 ANFIS ANFIS: 10.21-18.72 

20 2010 Hybrid Model MAPE: 2.14, MAE: 126.73 MW 

93 2011 SR-SVR + CABC MAPE: 2.387 

94 2011 SVR + HCIA MAPE: 1.766 

95 2012 T2SDSA-FNN MAPE: 1.4446, 2.0428 

96 
2012 LSSVM + FOA MAPE: 1.305. MSE: 2476 

2012 LSSVM-CSA MAPE: 1.959. MSE: 6308 

97 2012 ARIMA-SVM MAPE: 3.85 

98 2013 FOA + GRNN MAPE: 0.132, 0.541, 2.964, 2.107, 0.001 

99 2013 SVR-DEKF-RBFNN MAPE: 0.72 

100 2013 WNN MAPE: 0.09-0.49 

101 2014 WGMIPSO MAPE: 0.45, 0.7237, 0.6826, 1.82 

102 2014 SVR-MFA MAPE:  1.6909 

103 2014 PSO + BPNN + GA-BPNN MAPE: 0.335 

104 2014 Pattern + Context Analysis MAPE: 3.23- 4.34 

105 
2014 DWT + ANN MAPE: 0.6. 

2014 DWT + SVM MAPE: 0.02 

106 2014 SVR + MFA MAPE: 1.85, 6.13, 6.15 

107 2015 Wavelet + BNN MAPE: 0.4383 

108 
2015 GMDH + DWT MAPE: 0.959 

2015 ANN + DWT MAPE:  1.252 

109 2015 WT-ELM-MABC MAPE: 0.55-1.87 

110 2015 GABPNN MAPE: 1.02 
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Ref. 
№ 

Year Model Name Performance 

111 2015 2xANN MAPE: 0.85 

33 2016 ANFIS MAE: 1,475; MAPE: 2.299; RMSE: 1,571  

35 2016 DNN + RBM MAPE: 3.2-8.84. RMSRE: 4.1-10.62 

112 2016 HFM MAPE: 10.25 

113 2016 HW+NN MAPE: 5.64, 8.34 

114 2016 ELM MAPE: 0.54 

115 2017 SDPSO + ELM MAPE: 2.182. MAE(MW): 22.93 

116 2017 LSTM-RNN MAPE: 2.13-2.57 

117 2017 LSTM-RNN MAPE: 0.0535, RMSE: 0.0702 

118 
2018 ANN + Fuzzy Logic MAPE: 3.9, 4.8 

2018 ANFIS MAPE: 4.91, 6.39 

119 2018 NARX-NN + SVR MAPE: 8-15 

120 2018 AS-GCLSSVM MAPE: 0.5596 

43 
2019 iForest + LSTM MAPE: 0.66-0.92 

2019 iForest + BP MAPE: 1.49-2.50 

121 
2019 MI + ANN + mEDE MAPE: 1.24 

2019 MI + ANN  MAPE: 3.81 

122 2019 FA-SVM MAPE: 1.56-1.79 

123 2019 HP (Hybrid parallel topology) MAPE: 1.14-1.31 

124 2019 ANN-IEAMCGM-R MAPE: 3.18, 3.89, 3.55, 7.3 

17 

2020 ISO-TS-RBF-RFNN MAPE: 6.82 

2020 SO-TS-RBF-RFNN MAPE: 7.62 

2020 GA-LSTM MAPE: 6.92 

44 2020 GRU + CNN MAPE: 2.8839. RMSE: 1203.23 

48 2020 GA-LSTM MAPE: 0.027 

125 2021 CNN + GRU MAPE: 3.73 

 

 
Fig. 8. MAPE Trends over Years for different Hybrid Methods. 

 

Hybrid methods incorporating Fuzzy Logic 

have proven especially effective in handling 

uncertainty and ambiguity in load data. Models 

like ACO + GA Fuzzy achieved a MAPE of 3.9, 

demonstrating the adaptability of fuzzy systems 

when enhanced with optimization techniques like 

Genetic Algorithms (GA) and Ant Colony 

Optimization (ACO). Similarly, ANN + NFIS 
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(2.30) integrated neural networks with Neuro-

Fuzzy Inference Systems to capture non-linear 

dependencies, achieving highly competitive 

performance with MAPE values as low as 

0.000396. These approaches illustrate the strength 

of hybrid fuzzy systems in managing complex 

dependencies while maintaining interpretability. 

Hybrid models involving Artificial Intelligence 

have pushed the boundaries of load forecasting.  

By integrating multiple AI techniques, these 

hybrids address specific limitations of standalone 

systems. For example, CNN + LSTM enhances 

short-term load forecasting by combining 

convolutional networks for spatial analysis with 

LSTMs for temporal patterns, though it reported a 

higher MAPE of 10.16 in certain contexts. 

Probabilistic AI hybrids, such as SARSA + DBN, 

combine reinforcement learning with probabilistic 

modeling to achieve robust performance, with 

RMSE values as low as 0.02. Hybrid methods 

also incorporate diverse combinations beyond AI 

and Fuzzy Logic. Wavelet Transform + Neural 

Networks + Regression demonstrated superior 

multi-horizon forecasting, achieving MAPEs of 

0.27 for 1-hour predictions and 1.42 for 24-hour 

predictions. Models like EMD + DL Ensembles 

integrate signal processing with deep learning 

ensembles to achieve MAPEs of 3.00, 

highlighting their effectiveness in capturing both 

temporal and frequency-domain patterns. The 

dataset reveals a continuous increase in 

publications on hybrid methods, reflecting their 

growing importance in load forecasting research. 

Early hybrid models, such as Kalman + Structural 

Time-Series, laid the groundwork for integrating 

statistical and probabilistic approaches.  
 

Fig. 9. MAPE performance for different model’s type. 
 

Over time, hybrid methods have become 

increasingly complex, incorporating advanced AI, 

fuzzy systems, and signal processing techniques. 

This growth trend is accompanied by a steady 

improvement in accuracy, with MAPEs declining 

significantly over the years.  

While early hybrids reported MAPEs of 10–15, 

recent models often achieve MAPEs below 5, 

with some reporting values as low as 1–2. Hybrid 

methods have become the backbone of modern 

load forecasting research, offering unmatched 

flexibility, adaptability, and accuracy.  

By integrating the strengths of diverse 

methodologies, these models address the non-

linear, seasonal, and uncertain characteristics of 

load data effectively. The continuous growth in 

hybrid methods publications and their proven 

ability to outperform traditional and standalone 

models ensure their pivotal role in the future of 

energy forecasting. 
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SUMMARY AND CONCLUSIONS 

The analysis underscores the exceptional 

potential of hybrid methods in load forecasting, 

which have consistently outperformed 

standalone techniques across all key metrics. AI 

methods demonstrate considerable potential, 

with an average MAPE of 3.93, highlighting 

their ability to achieve precise predictions under 

optimal conditions. However, their high 

maximum MAPE of 23.5 suggests occasional 

challenges in handling certain datasets or 

modeling scenarios. In contrast, Fuzzy Logic 

Methods stand out for their consistent 

performance, achieving a minimum MAPE as 

low as 0.13 and maintaining average MAPEs 

below 3, showcasing their robustness in 
managing uncertainty and vagueness in data. 

Hybrid approaches that integrate Fuzzy Logic 

and Artificial Intelligence exhibit exceptional 

performance, with Hybrid Fuzzy Logic Methods 

achieving a minimum MAPE of 0.000396 and 
Hybrid AI Methods reaching as low as 0.03.  

The continuous decline in MAPE values over 

the years reflects the transformative impact of 

hybrid models, with modern approaches frequently 

achieving MAPEs below 5 and approaching near-

perfect predictions in some cases. This progress 

highlights the increasing adoption of hybrid 

techniques and their pivotal role in overcoming the 
limitations of traditional methods. 

Future research should prioritize further 

development and optimization of hybrid 

approaches. Enhancing integration strategies 

between methodologies, refining feature selection 

processes, and leveraging advanced 

computational tools can unlock even greater 

forecasting potential. By focusing on hybrid 

systems, researchers can drive breakthroughs that 

not only achieve superior accuracy but also ensure 

the reliability and adaptability required for the 
evolving demands of modern power grids.
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