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Abstract. The aim of this study is to develop the architecture of a diagnostic system and a multi-level
reliability model aimed at improving the cost-efficiency and operational reliability of induction traction
motors. To achieve this goal, a comprehensive development process was carried out: based on failure
statistics, the main defects and types of damage to critical motor components were identified for
monitoring and timely maintenance; the architecture of an integrated diagnostic system for assessing the
technical condition of motor components (stator, rotor, bearings) was designed; and a reliability model
was constructed, reflecting eight operational states of the motor from full functionality to catastrophic
failure. The reliability assessment is based on the Kolmogorov-Chapman system of equations, which
describes probabilistic transitions between operational states and allows accurate prediction of failure-
free runtime and optimal maintenance intervals based on current parameters. The most important results
include the formalization of the relationship between diagnostic signals and reliability states and the
construction of the reliability function for dynamic maintenance scheduling. The significance of the
results lies in the integration of diagnostics with probabilistic reliability modeling, which ensures higher
failure prediction accuracy, reduced unplanned downtime, and improved operational readiness. A key
contribution of the study is the practical implementation of the eight-state model, enabling dynamic
maintenance planning and adaptation of service strategies to the real-time condition of equipment. The
proposed strategy lays the foundation for intelligent control of traction drives and the implementation
of predictive maintenance systems, which is especially relevant for rail transport and other industries
using electric drives.
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Rezumat. Scopul studiului este de a dezvolta arhitectura unui sistem de diagnosticare si a unui model de fiabilitate
pe mai multe niveluri, menit s imbunatateasca eficienta costurilor si fiabilitatea operationala a motoarelor de
tractiune cu inductie. Pentru a atinge acest obiectiv, a fost realizat un proces cuprinzator de dezvoltare: pe baza
statisticilor de defectiuni, au fost identificate principalele defecte si tipuri de deteriorare a componentelor critice
ale motorului pentru monitorizare si intretinere la timp; a fost proiectatd arhitectura unui sistem de diagnosticare
integrat pentru evaluarea stérii tehnice a componentelor motorului (stator, rotor, rulmenti); si a fost construit un
model de fiabilitate, reflectdnd opt stiri de functionare ale motorului - de la functionalitate completa pana la
defectiune catastrofala. Evaluarea fiabilitatii se bazeaza pe sistemul de ecuatii Kolmogorov-Chapman, care descrie
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tranzitiile probabilistice intre starile de functionare si permite prezicerea precisa a timpului de functionare fara
defectiuni si a intervalelor optime de intretinere pe baza parametrilor actuali. Cele mai importante rezultate includ:
formalizarea relatiei dintre semnalele de diagnosticare si starile de fiabilitate si construirea functiei de fiabilitate
pentru programarea dinamicd a intretinerii. Semnificatia rezultatelor constd in integrarea diagnosticérii cu
modelarea probabilistica a fiabilitatii, care asigura o precizie mai mare a predictiei defectiunilor, reducerea timpilor
de nefunctionare neplanificati si o pregatire operationala imbunatatitd. O contributie cheie a studiului este
implementarea practica a modelului cu opt stéri, care permite planificarea dinamica a mentenantei si adaptarea
strategiilor de service la starea in timp real a echipamentelor. Strategia propusa pune bazele controlului inteligent
al actionarilor de tractiune si implementarii sistemelor de mentenanta predictiva, ceea ce este relevant In special
pentru transportul feroviar si alte industrii care utilizeaza actionari electrice.

Cuvinte-cheie: motor cu inductie, statistici ale defectiunilor, sistem de diagnosticare, model de fiabilitate,
mentenanta predictiva, actiondri de transport, proces Markov.

HMHTerpupoBaHHasi cucTeMa ATUATHOCTHKH U MHOTOYPOBHEBOE MO/JeJIHPOBaHNe HA/ICKHOCTH IS
NPEeANKTHBHOI0 00C/IyKHBAHHUS TPAHCIIOPTHBIX ACHHXPOHHBIX JBHIaTe el
Ulysp C., T'yoaperuu O., *Meakonora H., 'Bozusik M., “Kupunuenko O., 2Mypagber B.
! Kowanuuckuii TexHUIeCKHI YHUBEPCUTET
Komanun, [Tonpma
2YyeOHO-HayIHbIH KMEBCKHI HHCTHTYT JKENIE3HOJOPOKHOTO TPAHCTIOPTA,
HauunonaneHelil TpaHcnOpTHBIN YHUBEpcUTeT, Kues, Ykpanna
3 BoCTOYHOYKpaMHCKHUIA HAlMOHANILHBIA yHUBEpcUTET UMeHH Branumupa Jans, Kues, Ykpauna
4V4yeOHO0-Hay4HEIH KHEeBCKHMI MHCTHTYT BOAHOTO TPAaHCIIOPTa UMeHH reTMana Iletpa Konamesnya-
Caraiinaysoro, HanmoHansHbIA TpaHCIOPTHBIN yHUBEpcUuTeT, Kues, Ykpanna

Annomavus. Llensio paboThI SBISETCS pa3paboTKa apXUTEKTYPhI AMArHOCTUYECKOM CHCTEMBI 1 MHOT'OYPOBHEBOI
MOJIE/I HaAEKHOCTH, HAIPABICHHBIX HA IOBBIIICHHE SKOHOMHYHOCTH U HAAEKHOCTH NPHU SKCIUTyaTalluH
ACHHXPOHHBIX TATOBBIX 3JIEKTpoABUTaTeneil. [ TocTHKeHUs IOCTaBICHHO 11eTi Obli1a BBINOJIHEHA CIISAYIOIas
KOMIUIEKCHAsl pa3paboTKa: Ha OCHOBE CTATUCTUKHU OTKa30B BBISBJICHBI OCHOBHBIE Ae(EKTHI U BH/IbI IOBPEKACHHMA
KJIIOYEBBIX JJIEMEHTOB ABUTATElsl, MOJISKAIINE KOHTPOIIO M CBOCBPEMCHHOMY O0CIyXHMBaHUIO; pa3paboTaHa
apXUTEKTypa HWHTETPUPOBAHHON THATHOCTHMYECKOH CHUCTEMBI KOHTPOJS TEXHHYECKOTO COCTOSHHUS SJIEMEHTOB
JIBHUTATeNs (CTaTop, POTOp, MOMIIUITHUKH); IOCTPOCHA MOJENb HAAEKHOCTH HA OCHOBE CTATUCTHUKH OTKA30B,
OTpaXKaloIiasi BOCEMb SKCIUTYaTALMOHHBIX COCTOSHHMN IBHUraTeis — OT IOJHOTO HCIIPABHOTO N0 COCTOSIHUS
KaTacTpo(uueckoro oTkasa. JJnarnocriuueckas cucreMa o0ecrieunBaeT BhISBICHNE MEKXBUTKOBBIX 3aMbIKaHUH B
00OMOTKE cTaropa, CTPYKTYpHBIX MOBPEXKICHHH KOPOTKO3aMKHYTOTO pOTOpa W aHOMaiuid BHOpalmuu B
MOAIIMITHUKOBOM y3Jie. B OCHOBe OIleHKM HaJEXHOCTH JIKUT cucreMa ypaBHeHHH Kommoroposa-Yenmena,
TO3BOJISIONIAsl  ONMCBHIBATH  BEPOSITHOCTHBIE — IEPEXOJbl MEXKAY  IKCIUTyaTallMOHHBIMH  COCTOSTHHSIMH,
MIPOTHO3MPOBATh CPOK OE€30TKAa3HOM paboThl ¢ y4€TOM TEeKYyUIMX HapaMeTpoB M ONTHMAJIbHBIE HWHTEPBAJIBI
TEXHHYECKOTO obOcmyxuBaHusA. Hanbomee BaXKHBIMH pe3ylbTaTaMM SBILIIOTCA: (OpMaM3AIs B3aHMMOCBSA3H
MEXIy JAWATHOCTUYECKMMH CHTHaJaMH M COCTOSHUSMHM  HaA&KHOCTH, pa3paboTKa  apXHUTEKTypHI
JUArHOCTHYECKOW CHUCTEMBI ¢ MUHHMMAIbHBIM YHCIOM CEHCOPOB (3 TOKOBBIX, 2 BHOPALMOHHBIX), a TaKKe
nonydyeHne GYHKUMM HAA&KHOCTH JUIl JIMHAMHUYECKOTO IUIAHMPOBAHMS OOCIYXHMBaHHs. 3HAYMMOCTb
MOJyYSHHBIX PE3YJIbTaTOB COCTOUT B MHTETPAIMH CHCTEMBI AUAarHOCTHKU C BEPOSITHOCTHBIM MOJAEINPOBAHUEM
HaJ&KHOCTH, 4TO obecreynBaeT 0oiiee BHICOKYIO TOYHOCTB NPOTHO3a OTKA30B, CHIDKEHHE HE3aINTaHNPOBAHHBIX
MPOCTOEB U MOBBIIICHNE YPOBHS AKCIITyaTallMOHHON TOTOBHOCTH. KITIOUEBBIM BKIIaZIOM MCCIICIOBAHUS SBIISIETCS
MpaKTHYECKas peatn3alys MOAEIH BOCBMU COCTOSTHUH, YTO MO3BOJISIET TMHAMHYECKH IIJIAHUPOBATh TEXHUIECKOE
o0cyXMBaHWe, IPUHUMATh OOOCHOBAaHHBIE PEILICHHsS Ha OCHOBE OIEHKH PHCKa M aJalTHPOBaTh CTPATErHio
00CIyKMBaHMs I10]] peasibHOE COCTOsIHUE 000pyoBanus. [IpemioxkenHas B padote crparerust QopMUpPYET OCHOBY
JUIA PAacUIMPEHHUS BO3MOXKHOCTEH WHTEIUIEKTYyaJbHOTO YIPABICHHUS PECYpCOM 3JIEKTPONPHUBOJIA M CO3TaHUHU
BO3MOYKHOCTH JIJIsl BHEIPEHUS CHCTEM IPEAUKTUBHOTO TEXHUYECKOT0 00CTy)KHBaHUs, 0COOEHHO aKTyaJIbHBIX IS
KEJIe3HOJJOPOKHOTO TPAHCIOpTAa W JPYTUX OTpacied NPOMBIIUICHHOCTH, WCHOIB3YIONINX 3JIEKTPHUECKUE
TIPHUBOJIBL.

Knrouesvie cnoea. aciHXpOHHBIHN IBUTATENb, CTATUCTHKA OTKA30B, CHCTEMAa JHATHOCTHKH, MOJIETb HAAECKHOCTH,
MPEIUKTUBHOE 00CITy)KHBaHUE, TPAHCIIOPTHBIE IPUBOIBI, MapKOBCKHI MpPOIIECC.

INTRODUCTION
Reducing the expenses of operating and
maintaining transportation equipment while
simultaneously increasing its efficiency and
dependability is an ongoing concern. This is

because every country's transportation system
needs to be more competitive, and logistical
duties must be completed on time. One key
component to resolving this issue is the creation
of reliable diagnostic and monitoring systems for
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the primary components of transportation
equipment while they are in operation in real time.
One may plan proactive actions to reduce
unplanned downtime and unexpected failures if
one may detect damage or degradation in the
condition of components of the transportation
equipment in a timely manner [1,2]. Furthermore,
perceiving developing problems before they
become major issues prevents the transportation
system from going into emergency mode and
stopping operations, which greatly impacts the
amount and expense of eventual repairs. The
induction motor is the most important part of
contemporary transportation systems, and it needs
to be controlled and monitored at all times. Due to
their low cost, ease of maintenance and, most
significantly, a high degree of reliability,
induction motors with squirrel-cage rotors are
most commonly utilized as drives in
transportation equipment.

However, better maintenance and control go
hand in hand with making sure induction motors
work reliably. An improvement of engine status
monitoring systems is a major focus of current
research. In addition, a thorough diagnostic
system is required to address the issues of
induction motor condition monitoring [3,4]. This
system should be able to track damage to the
engine's main components, identify the type and
extent of damage, and potentially track the
progress of the defect over time [5].

If one wants to know how efficient and cost-
effective transportation equipment will be, one
needs to know how long it will be before any
problems arise so one can schedule maintenance
and repairs accordingly [6].

Future progress in this area of diagnostic
equipment, when coupled with mathematical
models for scheduling maintenance and
anticipating electric motor failures using
diagnostic indicators, is highly desirable and
warranted. To minimize maintenance expenses
and prevent unexpected emergency failures, it is
essential to possess a well-organized and accepted
strategy for the maintenance of engine
components. This will ensure that the equipment
operates reliably and efficiently.

These days, researchers in the transportation
sector frequently turn to mathematical modeling
techniques to minimize operational defects.
Findings from this study help with a variety of
organizational issues related to transportation
facility administration and upkeep, as well as with
the creation and refinement of new transportation
system designs during design and production

phases. Modeling the operational processes of
traction motors with an online diagnostic system
allows the authors to boost the efficiency of
railway transport, as presented in their studies [7-
9].

For effective condition monitoring of
induction motors, it is essential to implement a
comprehensive diagnostic system capable of
detecting damage to key motor components. Such
a system should not only identify the type of fault
but also assess its severity and enable continuous
tracking of defect progression over time [10,11].
This is particularly important in transport
applications, where the ability to predict failure-
free operating periods is critical for scheduling
maintenance and repair activities. Accurate
forecasting directly influences both economic
indicators and the overall operational efficiency
of transport equipment.

To diagnose the current state during
operation, the most suitable are non-invasive
methods based on the analysis of vibration signals
[12], stator current [13,14], vibration and current
(temporal and spectral) using artificial
intelligence  [15,16], which meet modern
requirements for diagnostic technology.

The integration of such diagnostic methods
with mathematical modeling opens promising
opportunities for the development of predictive
maintenance strategies. By leveraging condition
indicators obtained through diagnostics, it
becomes possible to forecast motor failures and
optimize maintenance scheduling [17,18].

A properly organized and adopted strategy
for the maintenance of engine elements forms the
basis for ensuring reliable and efficient operation
of equipment while minimizing maintenance
costs and preventing sudden emergency failures.

In modern research in the transport industry,
mathematical modeling methods are actively used
to solve various problems that arise during
operation. The obtained research results are used
both in the development and improvement of new
designs of transport systems at the design and
production stages, and for solving a number of
organizational problems in the management and
maintenance of transport facilities. The authors’
works [19-21] present the results of modeling the
operating processes of traction motors, with an
online diagnostic system, which makes it possible
to increase the efficiency of railway transport.

This study presents a novel approach to
improving the operational reliability of transport
induction motors by integrating a real-time
diagnostic system with a multi-level reliability
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model. Unlike traditional studies, where fault
diagnostics and reliability modeling are
considered separately, the proposed method
combines both aspects within a unified
framework.

During operation, specific technological
railway transport systems possess deterioration
processes that impact several internal states. The
semi-Markov process explains how these systems
work, which can be complex and show a slow
decline in many parts because of different factors
during operation. The primary emphasis of
research aimed at enhancing railway transport

dependability (the induction motor) and
operational efficiency appears to be the
management of production alongside the

scheduling of maintenance and repairs during the
planning phase. However, there is still shortage of
studies on the coordination of maintenance and
repairs for modern rolling stock. The importance
of optimizing maintenance strategies and
improving the accuracy of reliability assessments
is growing as efforts to maintain the
competitiveness  of railway transportation
continue. A key contribution of this study is the

bearing damage,

2%  \ \

development of a model for evaluating the
reliability of railway systems equipped with
induction motors, based on the condition of
critical components and potential failure modes
identified through an on-board diagnostic system.
I. BLOCK DIAGRAM OF THE
DIAGNOSTIC SYSTEM FOR INDUCTION
MOTORS

Diagnostic systems for induction motors must
include modules for monitoring the condition of
the main structural elements of the motor to
accurately determine the type and extent of
damage. When developing a structural diagram of
the diagnostic system, it is necessary to analyze
the frequency of failures of the stator, rotor and
bearing unit — the three main structural elements
of the induction motor. Statistical data vary
depending on the motor type, its design, operating
mode and operating conditions, but the general
trend of the ratio of damage by elements is
preserved. Figure 1 shows averaged data on the
operational statistics of failures of induction
motors with a squirrel-cage rotor with distribution
by structural elements.

,

Fig. 1. Damageability of the main elements of an induction motor.

There are various types of damage that affect
each motor component differently (Fig. 1). For
each structural component, it is advisable to
include in the diagnostic system those types of
faults that are most common and do not lead to
catastrophic failure over a certain period of time,
although they degrade operational performance
and may develop into an emergency condition.
This approach allows for optimization of the
structural diagnostic scheme and the selection of
appropriate diagnostic methods. Winding faults
account for the vast majority of stator failures (up
to 80% of which are inter-turn short circuits in a
winding phase) [22-24]. Depending on the
number of shorted turns, an inter-turn fault may
have a parametric nature and lead to a reduction
in motor performance.

The vibration caused by the asymmetric
spinning magnetic field during this damage also
has a severe impact on the engine's structural
elements, increasing the likelihood that they
would break prematurely. A turn-to-turn short
circuit causes the stator winding's insulation to
deteriorate even further, leading to a secondary
catastrophic failure and the engine switching off
in emergency mode due to the elevated current
and, by extension, heat in the closed section of the
winding. Extra damage from secondary failures,
on top of the emergency engine shutdown,
increases the expense of restoration work and, in
extreme circumstances, makes restoration and
continued engine usage impossible.

A limited percentage of failures that can be
observed during rebuilding or routine engine
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maintenance are other stator damage problems.
As a result, the diagnostic system must be able to
detect turn-to-turn short circuits early on and track
their progression. If transportation systems are to
effectively monitor the state of induction motors,
a diagnostic system must be able to detect the
nature of the fault, the extent of damage, and the
exceeding of specific operational parameters
beyond their limitations.

Methods based on a spectral analysis of
stator currents, vibration parameters of the
electric motor, and an analysis of the machine's
internal thermal balance are among the most
promising approaches to monitoring turn-to-turn
short circuits in on-board monitoring systems.
The range of its usage is limited by the difficulty
of evaluating and interpreting the temperature
values obtained under running settings and
forecasting the trouble-free operation life, which
constitutes a drawback in utilizing the approach to
monitor the thermal state of the induction motor's
elements. Due to the features of changes in
vibration parameters for various forms of turn-to-
turn short circuits presented in [25], it is difficult
to reliably evaluate the degree of damage when
assessing the stator winding based on vibration
parameters.

Results for establishing turn-to-turn short
circuits utilizing the spectrum components of the
stator current were the most practicable among
the known methods. We can correctly identify the
stator winding damage type from the vector
pattern using the Park’s vector approach method
[26]. In order to accurately determine the number
of short-circuited turns when the engine is
operating under load with a possible poor-quality
supply voltage system, researchers have adapted
the Park's vector method to work in on-board
diagnostic systems. The results of these studies
are given in [19]. These research findings, such as
the potential for exterior placement of current
sensors for diagnostic system operation, ensure
that this method completely complies with
modern operational standards for diagnostic
equipment.

The bearing assembly (Fig. 1) is the next
most common structural component to fail in
induction motors. Failure rates can range from 28
to 40 percent, depending on the operating modes
and the application range. The majority of bearing
failures in vehicles are caused by increased
clearance and cracks that form on the bodies and
raceways as a result of normal operation. Some of
the most typical reasons for bearings to fail
include:

- excessive loads: lack of proper sealing;

- incorrect installation;

- using a lubricant of poor quality, which
leads to increased wear and overheating;

- heightened machine vibration
running.

When bearings wear out, technological
clearances rise over the normative ones, leading
to vibration and more heat. A parametric failure
occurs when the vibration parameters of a bearing
are exceeded: this failure can develop rapidly and
result in an emergency failure of the bearing or its
total destruction. The most catastrophic incidents
occur when bearings are destroyed while engines
are operating, particularly those with high power,
and it is sometimes impossible to restore such an
engine afterwards. Because of its enormous mass
and inertia, the shattered bearing forces the
spinning rotor to become eccentric, which in turn
brings it into touch with the stator's structural
components and damages them. The cost of such
restoration is comparable to the price of a new
motor. Therefore, the onboard diagnostic system
for induction motors used in transport equipment
requires continuous monitoring of the bearing
condition as a critical element. Bearing diagnostic
procedures based on vibration signal spectrum
analysis are the most accurate and informative
[27,28]. The presence of harmonics in the
vibration spectrum indicating specific faults,
along with their correlation, allows for accurate
fault localization through spectral analysis.

To capture vibration signals during the
vibration diagnostics of rotating machinery,
piezoelectric vibration sensors are the most
commonly used.

It is also important to monitor the rotor,
which is another structural component of an
induction motor, while it is running. The rotor's
primary vulnerability is a contact failure in the
short-circuited winding, specifically between the
closing rings and the rods. In the early stages of a
parametric engine failure, such damage occurs
while the engine is operating. The engine's energy
and mechanical properties degrade when this kind
of damage is present. Additional sequential
burnout of other rods occurs due to increased
current on them as the engine continues running
with a damaged rotor, which is accompanied by
vibration and increased current on the remaining
winding rods. This is particularly true during
overload or difficult starting periods.

Centrifugal force can cause burned-out rods
to migrate towards the air gap as the machine
continues to operate. Consequently, it is essential

while
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for the built-in diagnostic system of automobiles
to identify the first symptoms of contact failure in
the short-circuited rotor winding while induction
motors are operating. Enhanced warmth,
vibration and current consumption are diagnostic
signs of squirrel-cage rotor winding deterioration.
While there are a variety of approaches to
condition  determination  utilizing  these
parameters, the Park's vector current method has
yielded the most useful findings for diagnostics in
industrial settings [14,29].

Utilizing the Park’'s vector technique to
identify stator and rotor winding problems
simultaneously optimizes the diagnostic system's
architecture by allowing current sensors and
multiple stator current converter units to work
together. The induction motor's key structural
elements were analyzed for their damageability
(Fig. 1) and the types of damage that require
control (Fig. 2). The related diagnostic blocks are
shown in the block diagram below.

The induction method diagnostic system is
composed of the following blocks:

‘ :> Sensor

system

- monitoring the condition of the stator with
an assessment of the number of short-circuited
turns in the phase windings;

- short-circuited rotor winding condition
monitoring, which involves determining the
integrity of the winding structure;

- bearing unit condition monitoring, which
involves vibration parameters.

Three sensors that measure current and two
that measure vibration ensure the correct
operation of the diagnostic system. The controlled
motor's bearing shields have vibration sensors
attached to them. Several diagnostic processes
involving current signals are executed by shared
blocks, all because of the Park's vector approach
to rotor and stator diagnostics. The display unit
obtains information on the number of damaged
rotor rods, the number of closed turns in the stator
phase, and the value of a the bearing units
whenever damage to engine elements is detected
through monitoring [14].

DIAGNOSTIC SYSTEM

Stator winding monitoring —»

I
]
! Indication
I

! display
system

Fig. 2. Block diagram of diagnostics of an induction motor (authors’ own elaboration).

The structural diagrams of the diagnostic
method using the vector-based Park's method for
detecting inter-turn short circuits in the stator
phase and assessing the structural integrity of the
rotor based on phase currents is shown in Figures
3aib. It is advisable to use external transformer-
type current sensors for each stator phase,
designated as sensors Disa, Disg, and Disc.

The development of a methodology and
algorithm for accurately determining the number
of short-circuited turns in the stator winding using
Park's method is based on the study of how the
number of such turns affects the amplitude of the
instantaneous stator current values in each phase,
as well as the current increments in each phase.
These parameters are utilized during the operation
of both the stator diagnostics module and the rotor
diagnostics module.

The studies were conducted using a
mathematical model for both symmetrical and
asymmetrical supply voltage systems of the
induction motor.

Therefore, to obtain the required values for
the subsequent application of Park's method, the
use of a Fast Fourier Transform (FFT) algorithm
is essential.

After determining the amplitude and phase values
of the fundamental harmonics of the phase
currents, as well as the phase shifts between the
phase voltages and currents, a coordinate
transformation is performed from the three-phase
coordinate system to the two-phase rotating dg-
coordinate system. Based on this, the parameters
of the Park’s vector figure are calculated [14].

The design of the structural diagram for the
bearing condition monitoring block is based on



PROBLEMELE ENERGETICII REGIONALE 4 (68) 2025

spectral analysis. This method ensures high
diagnostic reliability due to its ability to clearly
identify defects by correlating mechanical
processes with the appearance of harmonics in the
frequency spectrum that are characteristic of
specific types of damage.

Monitoring of stator phase currents
(sensors DIsA, DIsB, DI1sC)

Block of fast Fourier transformation and
coordinate transformations
Iyt
Park’s vector hodograph calculation block

Calculation of currents Iz and L. angle of
inclination 6

v

Calculation of parameters of the Park
vector hodograph in the appropriate

212

Block of computational identification

Calculation of the angular coefficient of
the stator current increase

Calculation of the number of damaged
turns for each phase

L

Block for analysis of the obtained values
and determination of the degree of

shorted turns and
faulted phase
indicator turns

a
Fig. 3. Structural diagram of the diagnostic module for winding condition monitoring:
a — stator; b — rotor (authors’ own elaboration).

The progression of a particular defect is tracked
by observing amplitude spikes in the
corresponding harmonics.

To detect and identify both the type and severity
of a defect, the quantitatively assessed diagnostic
parameters are compared against the threshold
vibration levels of bearing components. This
method fully meets the requirements for in-
service diagnostic systems and supports
automation of the diagnostic process.

The proposed diagnostic system allows
monitoring the occurrence of the main types and
kinds of defects during the operation of the engine
and their development. The operation of the
diagnostic system requires only five sensors: three
current sensors and two vibration sensors. The
system architecture was developed by a research

Monitoring of stator phase currents
(sensors Djgy. Dysp. Disc)

Block of fast Fourier transformation and
coordinate transformations

Park’s vector hodogréﬁh calculation block

Calculation of currents Isd and Isq. angle of
inclination 6

U

Calculation of parameters of the Park
vector hodograph in the appropriate basis

J

Block of computational identification

Calculation of Park vector projections of
the outer and inner circle

Calculation of the index of assessment
of the increase in the thickness of the

1l

Rotor Damage Evaluation and Threshold
Commarison Block

Rotor Damage
Severity Indicator

b

group led by PhD O. Gubarevych and confirmed
through mathematical modeling.

However, the use of the diagnostic system
primarily enables monitoring of defects that have
already begun to manifest. To prevent the sudden
occurrence of such defects, it is essential to
implement a system of periodic maintenance for
the motor, particularly for its critical components.
Therefore, the next objective of this research is
the development of a reliability model aimed at
forecasting fault-free operation and scheduling
maintenance activities.

The proposed reliability model will take into
account potential stator failures, such as interturn
short circuits, as well as structural integrity
violations in the squirrel-cage rotor winding.
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Il. INDUCTION MOTOR TRANSPORT
SYSTEM OPERATION 8-STATE MODEL

Possible engine states with a diagnostic system
during operation

When determining the extent of damage to

electric motor elements, the primary concern is
forecasting the time of trouble-free operation and
the best time to perform restoration or debugging,
all while keeping in mind the details of the
transport operation.
In the event that one of the engine's structural
components fails, the engine's parameters and
characteristics will degrade, or the engine will
stop working altogether, depending on the kind of
failure. Thus, the structural diagram of engine
reliability has a sequential form of the relationship
of individual blocks, symbolizing the reliability of
its components.

Therefore, to build a reliability model of the
operating process, it is important to consider all
states of the engine structural elements preceding
the complete loss of operability. Depending on the
nature of the malfunction, the symptoms that
appear before the engine's performance

the influence of external and
operational factors

functional use

operation process

diagnostics
elements

completely disappear over varying durations. For
maintenance or repair planning with a known
restoration work volume and for averting
emergency failures during operation, information
on the occurrence of such states or the transition
from one to another is crucial.

It was considered feasible to keep the engine
running until a pre-emergency state was reached
when describing all the conceivable engine states
while it was operating, even if a parametric failure
occurred in one of its elements. The engine must
be taken out of operation and repair work must be
completed before the emergency failure occurs,
which is when the pre-emergency stage begins.

The reliability evaluation model is used to
compile data for different scenarios in the
presence of a diagnostic system. Remedial actions
can be implemented at three points in the engine's
operation, as shown in Fig. 4. Firstly, when the
diagnostic system detects a defect in one of the
elements early on. Secondly, during extended
operation, when the defects are being detected
gradually until they reach a critical stage of
development. For the last time, this is after an
emergency stop.

restoration

post-accident

critical

planned

Fig. 4. Operating diagram of an induction motor with a diagnostic system (authors’ own
elaboration).

Maintaining restoration operations between
scheduled and emergency maintenance (Fig. 4) is
the most rational approach. Emergency repairs are
significantly more complex and expensive than
those performed preventively. A reliability model
based on the failure behavior of each structural

component  allows  determining  optimal
restoration timing, especially in transport
applications.

The proposed model defines eight motor
states:

SO — fully operational: the engine operates
within nominal parameters. However, deviations
such as increased temperature, vibration,

overload, or frequent startups may initiate early-
stage faults.

S1 - stator parametric failure: partial
performance degradation caused by inter-turn
short circuits in the stator winding. These faults
are typically due to insulation breakdown from
overloads or mechanical issues (e.g., bearing
seizure), as well as environmental factors like
moisture ingress. Resulting vibration can
propagate damage to the rotor and bearings,
increasing power losses and the risk of emergency
shutdown.

S2 — bearing parametric failure: this state is
characterized by increased vibration and heat,
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indicating partial failure. Progressive bearing
wear affects the entire motor system, accelerating
stator winding insulation degradation and
potentially leading to complete motor failure.
Early detection of abnormal vibration levels is
critical.

S3 —rotor parametric failure: this condition
is caused by degraded contact in the squirrel-cage
rotor windings. Poor soldering quality, material
fatigue, or thermal stress may lead to broken or
loosened rotor bars. The resulting current
imbalance and increased vibration accelerate
rotor wear and reduce operational stability. Under
peak loads or during startup, this condition may
lead to complete rotor failure. Restoration
involves rewilding or replacing damaged rotor
bars to restore structural and electrical integrity.

S4 — critical stator condition (pre-failure):
the stator winding is subjected to significant
thermal stress caused by prolonged inter-turn
short circuits. Even minor overloads or frequent
startup cycles further deteriorate the insulation,
increasing the risk of sudden failure. The motor
operates in a critical state with a high probability
of emergency shutdown. Immediate intervention
and corrective maintenance are required upon
detection of this condition to prevent catastrophic
damage.

S5 — critical bearing condition (pre-failure):
excessive internal clearance and abnormal
vibration suggest bearings are near failure. Small
shocks or braking can lead to rotor eccentricity,
rotor-to-stator contact, and structural damage.
Prompt bearing replacement is necessary to avoid
emergency stop.

S6 — critical rotor condition (pre-failure):
high temperatures and rotor vibration signal pre-
failure. Continued operation leads to rod
deterioration and loss of output power. Urgent
repair is required, potentially involving rewelding
or full rotor replacement.

S7 — catastrophic failure: total inoperability
due to failure of a major component (stator, rotor,
or bearing). The motor ceases functioning and
requires full restoration.

State-based model enables continuous
monitoring and targeted maintenance planning.
By linking diagnostic signals to these reliability
states, the system allows for accurate prediction
of failure progression, dynamic maintenance
scheduling, and minimization of unscheduled
downtimes.

Research on an 8-status model of the
workflow of transport systems with induction
motors

This study characterizes eight operational
states of motor components using Kolmogorov-
Chapman state equations to assess the reliability
of a transport system that includes induction
motors. This assessment must take into account
the intermediate state, which corresponds to the
state of the motor before the accident for each
structural component.

In Figure 5, the operating states of transport
systems using induction motors are interpreted as
follows:

- SO — state of full operability,

- S1 — state of parametric stator failure,

- S2 — state of parametric bearing failure,

- S3 — state of parametric rotor failure,

- S4 — state of pre-accident stator failure,

- S5 — state of pre-accident bearing failure,

- S6 — state of pre-accident rotor failure,

- S7 — state corresponding to an inoperative
state.

Fig. 5. An illustration of the eight-state model
that describes how induction motors in
transport vehicles operate: authors’ own
elaboration.

Descriptions of the transition relationships
between states in the operation process model are
as follows:

A, — transition from state SO to state S1 in the

event of a stator parameter fault;
L, — transition from state SO to state S2 in the

event of a bearing parameter fault;
L,— transition from state SO to state S3 in the

event of a rotor parameter fault;
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L, — transition from state S1 to state S4 in the

event of a pre-accident stator failure;
A — transition from state S2 to state S5 in the

event of pre-accident bearing failure;
L, — transition from state S3 to state S6 in the

event of pre-accident rotor failure;
A, — transition from state S4 to state S7 in the

event of induction motor failure;
A,— transition from state S5 to state S7 in the

event of induction motor failure;
A, — transition from state S6 to state S& during

induction motor failure;
u, — transition from state S1 to state SO during

stator repair;

u, — transition from state S2 to state SO during
bearing repair;

u,— transition from state S3 to state SO during

rotor repair;
u, — transition from state S4 to state SO during

stator repair;

s — transition from state S5 to state SO during
bearing repair;

u, — transition from state S6 to state SO during

rotor repair;
u, — transition from state S7 to state SO during

induction motor repair.
The system presented is characterized by the
following Kolmogorov-Chapman equations:

Reo(t) =Ry Ryo (1) + 1y Qg (1) =2, - Ryo (1) +
+H, - Qs (t)_M ‘Rso (t)+H3 Qs (t)+”4 ’

Qs (t) =X Ry (t 1y -Qsy (t)_}\’A Qg (t)'
Qs> (t) =X, Rgo (t)_lvlz Qs2 (t) As - Qs, (t)1
Qss (t):xs'Rso(t)_“s'Qsa (t)_ke'st(t)v 1)
<4 (t) =y Qg (t)_M Qs (t)—k7 Qs (t)'
55 (t) =hsQs, (t)—us “Qss (t)_xs “Qss (t)!
%6 (t) =N Qs (t)_l’-e "Qse ('[)—7\9 “Qse ('[),
Qa7 (1) =27 - Qsy (1) + 25 - Qs (1) + 2 - Qs (1)~
—H; - Qg7 (1)
Given the starting conditions:
Rs, (0) =1,
Qs1 (0) =Qs, (0) =Qqs (0) =Qs, (0) = 2)

=Qss (0) = Qs (O) =Qs; (0) =0,
By utilizing the Laplace transformation, the
subsequent system of linear equations is obtained:
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S Rgo (S)_]-: —hy R;o (S)+“1 le (S)_
_7‘2 ' Rgo (S)+“2 ng (S)_}\’S ’ Rgo (S)+
Hs an (S)"‘W Q;4 (S)"'“s Qgs (S)+
+Ug 'Qge (S)+“7 Q;7 (S)’

$:Qq,(5) =%, Rgy(8)— 1, Qs (5) =25 Qg (5), @)
S'Q;3(S) =25 Rgg (S)_“3 Qs (S)_ke 'Q;3(S)'
$-Qay (8) =y Q5 (8) — 1y - Qu (5) =27 -Qsu (5),

S 'Qgs (S) = A 'ng (S)_Hs 'Qgs (S)_xs 'Qgs (S)’
5-Qs6(8) =25 Qsa (8) Mg - Qse () 2o - Qs (),
$+Qs7(S)=2; - Qay () + g - Qss () +2g - Qg5 (S),
—1;-Q%, (s)

I1l. RESEARCH RESULTS
The function R, (t) is the reliability function

that indicates the likelihood that a specific
technical item is fit for use in terms of its
reliability. The value of the readiness indicator for
a given duration is numerically comparable to
this. Reliability tests of an operating induction
motor allowed for a quick identification of the
effects of operational and reliability indicator
modifications on diagnostic system state-
describing parameter values. Results were based
on the severity ratings of system damage and
repairs found in Table 1. The accepted values
were calculated using average failure data and
operational data obtained from railway energy
companies [30-33].

Table 1.
Parameters for system reliability.
Parameter Value [1/h]
A 0.00001
I 0.00002
A, 0.000025
Ay 0.0000416
A, 0.00013
A 0.000012
A 0.000125
A, 0.0000167
Ag 0.0000125
X 0.0000137
u 0.0208
T 0.0416
1, 0.0208
My 0.0416
K, 0.0516
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e 0.0208
g 0.0316
W, 0.0116

Based on the inverse Laplace transform and
the values from Table 1, the probabilities of the
system tested being in distinct operating states are
as follows, assuming equations (1)—(2) and
exponential distribution.

The duration of testing for transport vehicle
induction motor systems is one year:

T =8760(h) 4

Although the calculations of the reliability

function R)(t) and the transition probabilities

between states were performed for a single motor
over an interval of 8,760 hours, the basis for the
model was formed using generalized operational
data from a group of 12 motors with a total
runtime of T = 105,120 hours. This provided
reliability and stability of the parameters used in
the simulation analysis.

Thus, the duration of one year refers not to
the operating time of a single motor, but to the
total calendar period during which the group of
motors was monitored under real operating
conditions.

The likelihood that the induction motor
utilized in transportation vehicles will maintain its
optimal R, condition for the duration of one year:

R, (1) = 0.999039097. (5)

The likelihood of the induction motor in
transport  vehicles maintaining partial
serviceability Q, for the duration of one year:

Q (t) = 0.000480307. (6)

Considering the likelihood that the induction
motor in transport vehicles will continue to be in
the state of partial serviceability Q, for the period
of one year:

Q, (t) = 0.000480307. @)

One-year probability that the induction motor
in transportation vehicles will continue to
function at critical suitability level Q,:

Q, (t) = 0.000479970. (8)
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One year prior to damage, the likelihood that
the induction motor in a transportation vehicle
will remain in the Q, condition:

Q, (t) = 0.000000576. 9)

One year prior to damage, the likelihood that
the induction motor in a transportation vehicle
will remain in the Q, condition:

Q, (t) = 0.000000576. (10)

One-year probability that the induction
motor in a transportation vehicle will remain in
the Q, pre-damage condition:

Q (t) = 0.000000576. (11)

For a period of one year, the likelihood that
the examined induction motor in transportation
vehicles will persist in the Q, state of

unsuitability (destructive condition):

Q, (t) =0.0000000481. (12)

The reliability model presented in the article
adopts the classical approach to building a
Markov model of transitions between technical
states of a system (in this case - an induction
motor), where the sojourn times in states are
modeled using the exponential distribution. This
choice is justified both theoretically and
practically, and finds broad support in the
scientific literature on reliability theory and
stochastic processes.

The exponential distribution is the only
continuous  distribution that satisfies the
memoryless  property, which forms the
mathematical foundation of a continuous-time
Markov process. This allows for the formulation

of the Kolmogorov-Chapman system of
equations, as demonstrated in the article.
In the specialized literature [34], the

exponential distribution is commonly adopted as
a baseline law for describing the time between
failures in technical system reliability models. In
Trivedi’s work [35], the author emphasizes that
models based on Markov processes with
exponential distributions form the core of
classical reliability analysis and enable efficient
solutions for multi-state systems with state
transitions.
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Therefore, for the initial construction of the
reliability model, the exponential distribution of
time to failure and recovery time was used, which
is a classical assumption in Markov processes.
This distribution can be considered a special case
of the Weibull distribution when the shape
parameter is equal to 1. Then, using the
exponential reliability ~function Ro(t), the
probability of occurrence of known conditions in
the tested induction motor in vehicles should be
calculated. To justify the applicability of the
exponential distribution at the initial stage of
modeling, a simulation analysis was conducted
using the one-sample Kolmogorov—-Smirnov test.

The chosen model is considered acceptable
at the early development stage, with the potential
for further refinement based on the Weibull
distribution once a sufficient amount of statistical
data is collected under real operating conditions
of the studied equipment.

As shown in Figure 6 , the probability values
computed for the R, (t) characteristic dictate the
appropriate time intervals for the distinct states.

Understanding the time distribution of a
diagnostic condition's likelihood requires creating
acomplex R, (t) characteristic diagram. Figure 7

displays the typical analysis results (Ro(t)).

Relative to the R, (t) characteristic Fig. 13, the

computed probabilities of the various sets of
states (Q, Q. Q,,Q;,Q,, Q5. Q. Q,) are located
towards the bottom. Therefore, the characteristic
(R, (t)) was shown with a range of changes in its

value below 0.001 for the purpose of future
analyses (Figure 7). Next, the points that reflect
the probabilities of the occurrence of individual

states (Q (t)) were annotated on the R, (t)

characteristic. Time intervals during which
specified probabilities of individual states occur

are shown in the (R, (t)) chart (Fig. 7).

From Figure 7 the following intervals are
obtained:
Q, =0.999039097 — (0+1230)[h

]
Q, =0.000480307 — (1230 - 3840) [ h]
Q, =0.000480307 — (1230 +3840)  h]
Q, = 0.000479970 —> (3840 5620)| h]
Q, =0.000000576 — (5620 +6980)[h]
Q, = 0.000000576 — (5620 +6980)| h]
Q, = 0.000000576 — (5620 + 6980)[h]
Q, =0.000000048 —> (t > 6980)[h]

2000

4000

.
»

6000 8000 t[h]

Fig. 6. Reliability function during a one-year period of operation of an induction motor in a
transport vehicle: authors’ own elaboration.
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Fig. 7. Detailed graph that shows the reliability function of an induction motor in a transport
vehicle throughout a 8640 — hour operation period: authors’ own elaboration.

IVV. DISCUSSION
The proposed model has a hierarchical
(multi-level) structure, which enables step-by-
step diagnostics of the technical condition of
traction motors and assessment of their reliability.
The model includes the following three functional
levels:

1. Local Level
At this level, the diagnostic system monitors
and evaluates individual components and

assemblies of the traction motor.

2. Functional Level

At this stage, information from various
components is integrated within functional
subsystems (units) that ensure the motor's
operation.

3. System Level

This level provides a comprehensive
(aggregated) assessment and forecasting of the
overall technical condition of the motor, based on
data from the previous levels and using reliability
models.

The model supports scalability, modular
implementation, and allows integration with
existing SCADA systems and dispatcher control
platforms.

From the examination of the features and
the probability values for the many conceivable
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states that occurred during the testing period, we
can deduce the following about the induction
motor in transportation vehicles:
—The induction motor in transport vehicles
reaches the serviceability state referred to as
SO. Therefore, from 0 to 1230 [h], the object
tested remains in state SO.
—Parametric damage states {S1, S2, S3}-
states of partial usability — develop during
time T, with the value of T, =3840[h].

Consequently, in the time interval
(1230;3840[h]) , the object tested may be

found in states {S1, S2, S3}, which are
degrees of parametric damage, also known as
partial serviceability states. Under such
conditions, induction motors used in
transport vehicles do not operate at their
maximum efficiency.
—The value T,=5620[h] the

occurrence of state S4, which is a pre-failure
or a pre-critical state of the stator.
Consequently, in the time interval

(3840;5620[h]), the object tested may be
found in one of three states: parameter

damage states (S1, S2, S3) or incomplete
serviceability. Under these conditions,

indicates
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induction motors used in transport vehicles
can only perform specific tasks.

—The motor rotor and bearing were damaged
prior to failure in states S5 and S6, as
evidenced by the following test time, T,.

(T, =6980[h]) represents the condition of the

motor before damage. The object tested may
be in a pre-damage condition or in states S5
or S6 throughout the entire time interval

(5620; 6980[h]) . States S5 and S6 are the

most effective operating ranges of the
induction motor tested in transport vehicles.
—State S7, i.e., the state of unfitness, occurred
in the next test time, T,. In the state of

unfitness, or state S7, the object tested is in a

time interval greater than 6980 hours, and

induction motors in transport vehicles are
damaged and cease to operate in this
situation.

Damage to a technical facility that occurs
gradually over time while it is being used is
referred to as non-critical damage. This kind of
damage is mostly caused by the natural
deterioration that comes with ageing and by the
effects of environmental conditions (such as
temperature and pressure).

The calculated operational characteristics and
periods for the object under consideration may be
of decisive importance for its effective use and
restoration planning.

Although this study does not directly compute
statistical confidence intervals or perform
Bayesian inference, the proposed reliability
framework using Kolmogorov-Chapman state
modeling is well-suited for future extensions
involving Maximum Likelihood Estimation and
Bayesian updating once sufficient empirical
failure data become available.

The multi-element Markov model structure
supports Bayesian updating as new failure data is
collected during system operation. This is
particularly useful for fleets, where real-time
feedback can refine reliability predictions over
time.

The model was built on the assumption that
all components follow an exponential distribution
of time to failure over the normal operating life of
the engine.

The study is considered as a methodological
base capable of being scaled and refined with the
increase in available statistical information.
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CONCLUSIONS

The study proposes and develops a
diagnostic system for induction motors focused
on monitoring the most common types of faults.
The primary components under control include
the stator winding, the rotor winding, and the
bearing units. The key defects targeted for
detection are turn-to-turn short circuits in the
stator winding, structural integrity failures in the
squirrel-cage rotor winding, and abnormal
vibration conditions of the bearings. The
proposed diagnostic system enables monitoring of
the onset and progression of these faults during
motor operation. To prevent the occurrence of
component defects, a reliability model has been
proposed for forecasting failure-free operating
periods and predicting the onset of critical
conditions. Taking into account the specific
nature of the selected failure types, the model
incorporates eight operational states of the tested
component, in accordance with diagnostic
methodologies commonly applied to induction
motors in transportation systems.

In developing the reliability model for the
induction motor, state equations—also known as
Kolmogorov-Chapman equations—are employed.
Provided that failure rate data for individual
components of the tested motor are available,
reliability parameters have been calculated and
validated through simulation. Based on the
obtained reliability metrics, a system for
scheduling maintenance and monitoring the
condition of motor components is proposed. This
system improves the overall reliability of the
motor and reduces the risk of pre-failure or critical
operating states. The proposed eight-level
approach offers several advantages over classical
reliability models, including more accurate
localization of technical states, direct integration
with diagnostic signals, and the ability to perform
dynamic maintenance scheduling based on the
current condition of the equipment.

A distinguishing feature of this study is the
proposed and developed research strategy for
complex technical systems, based on the
sequence: failure statistics — diagnostic system
— reliability model. This approach enables the
most objective construction of a reliability model
aimed at preventing any type of failure through
timely maintenance of system components.
Determining the time periods when the analyzed
technical system becomes unsuitable for further
operation—or when certain components enter a
potential risk zone for critical failure—also opens
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opportunities for developing new strategies to
improve the tested elements.

The operational characteristics obtained in
this study for the selected test object (the
induction motor) make it possible to define the
optimal timing for repairs and to determine the
end-of-life period, i.e., the point at which the
motor is deemed fully unserviceable. This
sequential development approach enhances both
the control over the condition of induction motor
components and the accuracy of reliability
modeling.

The multi-element Markov model structure
supports Bayesian updating as new failure data is
collected during system operation. This is
particularly useful for fleets, where real-time
feedback can refine reliability predictions over
time. The presented model is flexible and can be
adapted to work with complex probability
distributions, such as the Weibull distribution. Its
architecture supports expansion through the use of
intelligent data analysis methods (data mining,
machine learning), which opens up prospects for
improving the accuracy of diagnostics and
prognostics. The research component
demonstrates scalability potential, making the
model suitable for real-world application across
various types of traction rolling stock.

The proposed new strategy for creating a
predictive model of the technical system can be
referred to as the " Strategy for planning updates
of complex technical systems based on analysis of
time to failure and condition monitoring status".
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