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Abstract. The aim of this study is to develop the architecture of a diagnostic system and a multi-level 

reliability model aimed at improving the cost-efficiency and operational reliability of induction traction 

motors. To achieve this goal, a comprehensive development process was carried out: based on failure 

statistics, the main defects and types of damage to critical motor components were identified for 

monitoring and timely maintenance; the architecture of an integrated diagnostic system for assessing the 

technical condition of motor components (stator, rotor, bearings) was designed; and a reliability model 

was constructed, reflecting eight operational states of the motor from full functionality to catastrophic 

failure. The reliability assessment is based on the Kolmogorov-Chapman system of equations, which 

describes probabilistic transitions between operational states and allows accurate prediction of failure-

free runtime and optimal maintenance intervals based on current parameters. The most important results 

include the formalization of the relationship between diagnostic signals and reliability states and the 

construction of the reliability function for dynamic maintenance scheduling. The significance of the 

results lies in the integration of diagnostics with probabilistic reliability modeling, which ensures higher 

failure prediction accuracy, reduced unplanned downtime, and improved operational readiness. A key 

contribution of the study is the practical implementation of the eight-state model, enabling dynamic 

maintenance planning and adaptation of service strategies to the real-time condition of equipment. The 

proposed strategy lays the foundation for intelligent control of traction drives and the implementation 

of predictive maintenance systems, which is especially relevant for rail transport and other industries 

using electric drives.
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Rezumat. Scopul studiului este de a dezvolta arhitectura unui sistem de diagnosticare și a unui model de fiabilitate 

pe mai multe niveluri, menit să îmbunătățească eficiența costurilor și fiabilitatea operațională a motoarelor de 

tracțiune cu inducție. Pentru a atinge acest obiectiv, a fost realizat un proces cuprinzător de dezvoltare: pe baza 

statisticilor de defecțiuni, au fost identificate principalele defecte și tipuri de deteriorare a componentelor critice 

ale motorului pentru monitorizare și întreținere la timp; a fost proiectată arhitectura unui sistem de diagnosticare 

integrat pentru evaluarea stării tehnice a componentelor motorului (stator, rotor, rulmenți); și a fost construit un 

model de fiabilitate, reflectând opt stări de funcționare ale motorului - de la funcționalitate completă până la 

defecțiune catastrofală. Evaluarea fiabilității se bazează pe sistemul de ecuații Kolmogorov-Chapman, care descrie 
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tranzițiile probabilistice între stările de funcționare și permite prezicerea precisă a timpului de funcționare fără 

defecțiuni și a intervalelor optime de întreținere pe baza parametrilor actuali. Cele mai importante rezultate includ: 

formalizarea relației dintre semnalele de diagnosticare și stările de fiabilitate și construirea funcției de fiabilitate 

pentru programarea dinamică a întreținerii. Semnificația rezultatelor constă în integrarea diagnosticării cu 

modelarea probabilistică a fiabilității, care asigură o precizie mai mare a predicției defecțiunilor, reducerea timpilor 

de nefuncționare neplanificați și o pregătire operațională îmbunătățită. O contribuție cheie a studiului este 

implementarea practică a modelului cu opt stări, care permite planificarea dinamică a mentenanței și adaptarea 

strategiilor de service la starea în timp real a echipamentelor. Strategia propusă pune bazele controlului inteligent 

al acționărilor de tracțiune și implementării sistemelor de mentenanță predictivă, ceea ce este relevant în special 

pentru transportul feroviar și alte industrii care utilizează acționări electrice.

Cuvinte-cheie: motor cu inducție, statistici ale defecțiunilor, sistem de diagnosticare, model de fiabilitate, 

mentenanță predictivă, acționări de transport, proces Markov.

Интегрированная система диагностики и многоуровневое моделирование надежности для 

предиктивного обслуживания транспортных асинхронных двигателей
1Дуэр С., 2Губаревич О., 3Мелконова И., 1Возняк М., 4Кириченко О., 2Муравьев В.

1 Кошалинский технический университет

Кошалин, Польша
2Учебно-научный Киевский институт железнодорожного транспорта,

Национальный транспортный университет, Киев, Украина
3 Восточноукраинский национальный университет имени Владимира Даля, Киев, Украина

4Учебно-научный Киевский институт водного транспорта имени гетмана Петра Конашевича-

Сагайдачного, Национальный транспортный университет, Киев, Украина

Аннотация. Целью работы является разработка архитектуры диагностической системы и многоуровневой 

модели надёжности, направленных на повышение экономичности и надёжности при эксплуатации 

асинхронных тяговых электродвигателей. Для достижения поставленной цели была выполнена следующая 

комплексная разработка: на основе статистики отказов выявлены основные дефекты и виды повреждений 

ключевых элементов двигателя, подлежащие контролю и своевременному обслуживанию; разработана 

архитектура интегрированной диагностической системы контроля технического состояния элементов 

двигателя (статор, ротор, подшипники); построена модель надёжности на основе статистики отказов, 

отражающая восемь эксплуатационных состояний двигателя – от полного исправного до состояния 

катастрофического отказа. Диагностическая система обеспечивает выявление межвитковых замыканий в 

обмотке статора, структурных повреждений короткозамкнутого ротора и аномалий вибрации в 

подшипниковом узле. В основе оценки надёжности лежит система уравнений Колмогорова-Чепмена, 

позволяющая описывать вероятностные переходы между эксплуатационными состояниями, 

прогнозировать срок безотказной работы с учётом текущих параметров и оптимальные интервалы 

технического обслуживания. Наиболее важными результатами являются: формализация взаимосвязи 

между диагностическими сигналами и состояниями надёжности, разработка архитектуры 

диагностической системы с минимальным числом сенсоров (3 токовых, 2 вибрационных), а также 

получение функции надёжности для динамического планирования обслуживания. Значимость 

полученных результатов состоит в интеграции системы диагностики с вероятностным моделированием 

надёжности, что обеспечивает более высокую точность прогноза отказов, снижение незапланированных 

простоев и повышение уровня эксплуатационной готовности. Ключевым вкладом исследования является 

практическая реализация модели восьми состояний, что позволяет динамически планировать техническое 

обслуживание, принимать обоснованные решения на основе оценки риска и адаптировать стратегию 

обслуживания под реальное состояние оборудования. Предложенная в работе стратегия формирует основу 

для расширения возможностей интеллектуального управления ресурсом электропривода и создании 

возможности для внедрения систем предиктивного технического обслуживания, особенно актуальных для 

железнодорожного транспорта и других отраслей промышленности, использующих электрические 

приводы.

Ключевые слова: асинхронный двигатель, статистика отказов, система диагностики, модель надежности, 

предиктивное обслуживание, транспортные приводы, Марковский процесс.

INTRODUCTION

Reducing the expenses of operating and 

maintaining transportation equipment while 

simultaneously increasing its efficiency and 

dependability is an ongoing concern. This is 

because every country's transportation system 

needs to be more competitive, and logistical 

duties must be completed on time. One key 

component to resolving this issue is the creation 

of reliable diagnostic and monitoring systems for 
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the primary components of transportation 

equipment while they are in operation in real time. 

One may plan proactive actions to reduce 

unplanned downtime and unexpected failures if 

one may detect damage or degradation in the 

condition of components of the transportation 

equipment in a timely manner [1,2]. Furthermore, 

perceiving developing problems before they 

become major issues prevents the transportation 

system from going into emergency mode and 

stopping operations, which greatly impacts the 

amount and expense of eventual repairs. The 

induction motor is the most important part of 

contemporary transportation systems, and it needs 

to be controlled and monitored at all times. Due to 

their low cost, ease of maintenance and, most 

significantly, a high degree of reliability, 

induction motors with squirrel-cage rotors are 

most commonly utilized as drives in 

transportation equipment. 

However, better maintenance and control go 

hand in hand with making sure induction motors 

work reliably. An improvement of engine status 

monitoring systems is a major focus of current 

research. In addition, a thorough diagnostic 

system is required to address the issues of 

induction motor condition monitoring [3,4]. This 

system should be able to track damage to the 

engine's main components, identify the type and 

extent of damage, and potentially track the 

progress of the defect over time [5]. 

If one wants to know how efficient and cost-

effective transportation equipment will be, one 

needs to know how long it will be before any 

problems arise so one can schedule maintenance 

and repairs accordingly [6]. 

Future progress in this area of diagnostic 

equipment, when coupled with mathematical 

models for scheduling maintenance and 

anticipating electric motor failures using 

diagnostic indicators, is highly desirable and 

warranted. To minimize maintenance expenses 

and prevent unexpected emergency failures, it is 

essential to possess a well-organized and accepted 

strategy for the maintenance of engine 

components. This will ensure that the equipment 

operates reliably and efficiently.

These days, researchers in the transportation 

sector frequently turn to mathematical modeling 

techniques to minimize operational defects. 

Findings from this study help with a variety of 

organizational issues related to transportation 

facility administration and upkeep, as well as with 

the creation and refinement of new transportation 

system designs during design and production 

phases. Modeling the operational processes of 

traction motors with an online diagnostic system 

allows the authors to boost the efficiency of 

railway transport, as presented in their studies [7-

9].

For effective condition monitoring of 

induction motors, it is essential to implement a 

comprehensive diagnostic system capable of 

detecting damage to key motor components. Such 

a system should not only identify the type of fault 

but also assess its severity and enable continuous 

tracking of defect progression over time [10,11]. 

This is particularly important in transport 

applications, where the ability to predict failure-

free operating periods is critical for scheduling 

maintenance and repair activities. Accurate 

forecasting directly influences both economic 

indicators and the overall operational efficiency 

of transport equipment.

To diagnose the current state during 

operation, the most suitable are non-invasive 

methods based on the analysis of vibration signals 

[12], stator current [13,14], vibration and current 

(temporal and spectral) using artificial 

intelligence [15,16], which meet modern 

requirements for diagnostic technology.

The integration of such diagnostic methods 

with mathematical modeling opens promising 

opportunities for the development of predictive 

maintenance strategies. By leveraging condition 

indicators obtained through diagnostics, it 

becomes possible to forecast motor failures and 

optimize maintenance scheduling [17,18].

A properly organized and adopted strategy 

for the maintenance of engine elements forms the 

basis for ensuring reliable and efficient operation 

of equipment while minimizing maintenance 

costs and preventing sudden emergency failures.

In modern research in the transport industry, 

mathematical modeling methods are actively used 

to solve various problems that arise during 

operation. The obtained research results are used 

both in the development and improvement of new 

designs of transport systems at the design and 

production stages, and for solving a number of 

organizational problems in the management and 

maintenance of transport facilities. The authors’ 

works [19-21] present the results of modeling the 

operating processes of traction motors, with an 

online diagnostic system, which makes it possible 

to increase the efficiency of railway transport.

This study presents a novel approach to 

improving the operational reliability of transport 

induction motors by integrating a real-time 

diagnostic system with a multi-level reliability 
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model. Unlike traditional studies, where fault 

diagnostics and reliability modeling are 

considered separately, the proposed method 

combines both aspects within a unified 

framework.

During operation, specific technological 

railway transport systems possess deterioration 

processes that impact several internal states. The 

semi-Markov process explains how these systems 

work, which can be complex and show a slow 

decline in many parts because of different factors 

during operation. The primary emphasis of 

research aimed at enhancing railway transport 

dependability (the induction motor) and 

operational efficiency appears to be the 

management of production alongside the 

scheduling of maintenance and repairs during the 

planning phase. However, there is still shortage of 

studies on the coordination of maintenance and 

repairs for modern rolling stock. The importance 

of optimizing maintenance strategies and 

improving the accuracy of reliability assessments 

is growing as efforts to maintain the 

competitiveness of railway transportation 

continue. A key contribution of this study is the 

development of a model for evaluating the 

reliability of railway systems equipped with 

induction motors, based on the condition of 

critical components and potential failure modes 

identified through an on-board diagnostic system.

І. BLOCK DIAGRAM OF THE 

DIAGNOSTIC SYSTEM FOR INDUCTION 

MOTORS

Diagnostic systems for induction motors must 

include modules for monitoring the condition of 

the main structural elements of the motor to 

accurately determine the type and extent of 

damage. When developing a structural diagram of 

the diagnostic system, it is necessary to analyze 

the frequency of failures of the stator, rotor and 

bearing unit – the three main structural elements 

of the induction motor. Statistical data vary 

depending on the motor type, its design, operating 

mode and operating conditions, but the general 

trend of the ratio of damage by elements is 

preserved. Figure 1 shows averaged data on the 

operational statistics of failures of induction 

motors with a squirrel-cage rotor with distribution 

by structural elements.

Fig. 1. Damageability of the main elements of an induction motor.

There are various types of damage that affect 

each motor component differently (Fig. 1). For 

each structural component, it is advisable to 

include in the diagnostic system those types of 

faults that are most common and do not lead to 

catastrophic failure over a certain period of time, 

although they degrade operational performance 

and may develop into an emergency condition. 

This approach allows for optimization of the 

structural diagnostic scheme and the selection of 

appropriate diagnostic methods. Winding faults 

account for the vast majority of stator failures (up 

to 80% of which are inter-turn short circuits in a 

winding phase) [22–24]. Depending on the 

number of shorted turns, an inter-turn fault may 

have a parametric nature and lead to a reduction 

in motor performance.

The vibration caused by the asymmetric 

spinning magnetic field during this damage also 

has a severe impact on the engine's structural 

elements, increasing the likelihood that they 

would break prematurely. A turn-to-turn short 

circuit causes the stator winding's insulation to 

deteriorate even further, leading to a secondary 

catastrophic failure and the engine switching off 

in emergency mode due to the elevated current 

and, by extension, heat in the closed section of the 

winding. Extra damage from secondary failures, 

on top of the emergency engine shutdown, 

increases the expense of restoration work and, in 

extreme circumstances, makes restoration and 

continued engine usage impossible.

A limited percentage of failures that can be 

observed during rebuilding or routine engine 
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maintenance are other stator damage problems. 

As a result, the diagnostic system must be able to 

detect turn-to-turn short circuits early on and track 

their progression. If transportation systems are to 

effectively monitor the state of induction motors, 

a diagnostic system must be able to detect the 

nature of the fault, the extent of damage, and the 

exceeding of specific operational parameters 

beyond their limitations.

Methods based on a spectral analysis of 

stator currents, vibration parameters of the 

electric motor, and an analysis of the machine's 

internal thermal balance are among the most 

promising approaches to monitoring turn-to-turn 

short circuits in on-board monitoring systems. 

The range of its usage is limited by the difficulty 

of evaluating and interpreting the temperature 

values obtained under running settings and

forecasting the trouble-free operation life, which 

constitutes a drawback in utilizing the approach to 

monitor the thermal state of the induction motor's 

elements. Due to the features of changes in 

vibration parameters for various forms of turn-to-

turn short circuits presented in [25], it is difficult 

to reliably evaluate the degree of damage when 

assessing the stator winding based on vibration 

parameters.

Results for establishing turn-to-turn short 

circuits utilizing the spectrum components of the 

stator current were the most practicable among 

the known methods. We can correctly identify the 

stator winding damage type from the vector 

pattern using the Park's vector approach method 

[26]. In order to accurately determine the number 

of short-circuited turns when the engine is 

operating under load with a possible poor-quality 

supply voltage system, researchers have adapted 

the Park's vector method to work in on-board 

diagnostic systems. The results of these studies 

are given in [19]. These research findings, such as 

the potential for exterior placement of current 

sensors for diagnostic system operation, ensure 

that this method completely complies with 

modern operational standards for diagnostic 

equipment.

The bearing assembly (Fig. 1) is the next 

most common structural component to fail in 

induction motors. Failure rates can range from 28 

to 40 percent, depending on the operating modes 

and the application range. The majority of bearing 

failures in vehicles are caused by increased 

clearance and cracks that form on the bodies and 

raceways as a result of normal operation. Some of 

the most typical reasons for bearings to fail 

include: 

- excessive loads: lack of proper sealing;

- incorrect installation; 

- using a lubricant of poor quality, which 

leads to increased wear and overheating;

- heightened machine vibration while 

running. 

When bearings wear out, technological 

clearances rise over the normative ones, leading 

to vibration and more heat. A parametric failure 

occurs when the vibration parameters of a bearing 

are exceeded: this failure can develop rapidly and 

result in an emergency failure of the bearing or its 

total destruction. The most catastrophic incidents 

occur when bearings are destroyed while engines 

are operating, particularly those with high power, 

and it is sometimes impossible to restore such an 

engine afterwards. Because of its enormous mass 

and inertia, the shattered bearing forces the 

spinning rotor to become eccentric, which in turn 

brings it into touch with the stator's structural 

components and damages them. The cost of such 

restoration is comparable to the price of a new 

motor. Therefore, the onboard diagnostic system 

for induction motors used in transport equipment 

requires continuous monitoring of the bearing 

condition as a critical element. Bearing diagnostic 

procedures based on vibration signal spectrum 

analysis are the most accurate and informative 

[27,28]. The presence of harmonics in the 

vibration spectrum indicating specific faults, 

along with their correlation, allows for accurate 

fault localization through spectral analysis.

To capture vibration signals during the 

vibration diagnostics of rotating machinery, 

piezoelectric vibration sensors are the most 

commonly used. 

It is also important to monitor the rotor, 

which is another structural component of an 

induction motor, while it is running. The rotor's 

primary vulnerability is a contact failure in the 

short-circuited winding, specifically between the 

closing rings and the rods. In the early stages of a 

parametric engine failure, such damage occurs 

while the engine is operating. The engine's energy 

and mechanical properties degrade when this kind 

of damage is present. Additional sequential 

burnout of other rods occurs due to increased 

current on them as the engine continues running 

with a damaged rotor, which is accompanied by 

vibration and increased current on the remaining 

winding rods. This is particularly true during 

overload or difficult starting periods.

Centrifugal force can cause burned-out rods 

to migrate towards the air gap as the machine 

continues to operate. Consequently, it is essential 
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for the built-in diagnostic system of automobiles 

to identify the first symptoms of contact failure in 

the short-circuited rotor winding while induction 

motors are operating. Enhanced warmth, 

vibration and current consumption are diagnostic 

signs of squirrel-cage rotor winding deterioration. 

While there are a variety of approaches to

condition determination utilizing these 

parameters, the Park's vector current method has 

yielded the most useful findings for diagnostics in 

industrial settings [14,29].

Utilizing the Park's vector technique to 

identify stator and rotor winding problems 

simultaneously optimizes the diagnostic system's 

architecture by allowing current sensors and 

multiple stator current converter units to work 

together. The induction motor's key structural 

elements were analyzed for their damageability 

(Fig. 1) and the types of damage that require 

control (Fig. 2). The related diagnostic blocks are 

shown in the block diagram below.

The induction method diagnostic system is 

composed of the following blocks: 

- monitoring the condition of the stator with 

an assessment of the number of short-circuited 

turns in the phase windings;

- short-circuited rotor winding condition 

monitoring, which involves determining the 

integrity of the winding structure; 

- bearing unit condition monitoring, which 

involves vibration parameters.

Three sensors that measure current and two 

that measure vibration ensure the correct 

operation of the diagnostic system. The controlled 

motor's bearing shields have vibration sensors 

attached to them. Several diagnostic processes 

involving current signals are executed by shared 

blocks, all because of the Park's vector approach 

to rotor and stator diagnostics. The display unit 

obtains information on the number of damaged 

rotor rods, the number of closed turns in the stator 

phase, and the value of a the bearing units 

whenever damage to engine elements is detected 

through monitoring [14].

Fig. 2. Block diagram of diagnostics of an induction motor (authors’ own elaboration).

The structural diagrams of the diagnostic 

method using the vector-based Park's method for 

detecting inter-turn short circuits in the stator

phase and assessing the structural integrity of the 

rotor based on phase currents is shown in Figures 

3a i b. It is advisable to use external transformer-

type current sensors for each stator phase, 

designated as sensors D1sA, D1sB, and D1sC.

The development of a methodology and 

algorithm for accurately determining the number 

of short-circuited turns in the stator winding using 

Park's method is based on the study of how the 

number of such turns affects the amplitude of the 

instantaneous stator current values in each phase, 

as well as the current increments in each phase. 

These parameters are utilized during the operation 

of both the stator diagnostics module and the rotor 

diagnostics module. 

The studies were conducted using a 

mathematical model for both symmetrical and 

asymmetrical supply voltage systems of the 

induction motor.

Therefore, to obtain the required values for 

the subsequent application of Park's method, the 

use of a Fast Fourier Transform (FFT) algorithm 

is essential.

After determining the amplitude and phase values 

of the fundamental harmonics of the phase 

currents, as well as the phase shifts between the 

phase voltages and currents, a coordinate 

transformation is performed from the three-phase 

coordinate system to the two-phase rotating dq-

coordinate system. Based on this, the parameters 

of the Park's vector figure are calculated [14].

The design of the structural diagram for the 

bearing condition monitoring block is based on 
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spectral analysis. This method ensures high

diagnostic reliability due to its ability to clearly 

identify defects by correlating mechanical 

processes with the appearance of harmonics in the 

frequency spectrum that are characteristic of 

specific types of damage.

                                              
   a                                                                                             b

Fig. 3.  Structural diagram of the diagnostic module for winding condition monitoring:

a – stator; b – rotor (authors’ own elaboration).

The progression of a particular defect is tracked 

by observing amplitude spikes in the 

corresponding harmonics.

To detect and identify both the type and severity 

of a defect, the quantitatively assessed diagnostic 

parameters are compared against the threshold 

vibration levels of bearing components. This 

method fully meets the requirements for in-

service diagnostic systems and supports 

automation of the diagnostic process.

The proposed diagnostic system allows 

monitoring the occurrence of the main types and 

kinds of defects during the operation of the engine 

and their development. The operation of the 

diagnostic system requires only five sensors: three 

current sensors and two vibration sensors. The 

system architecture was developed by a research 

group led by PhD O. Gubarevych and confirmed 

through mathematical modeling.

However, the use of the diagnostic system 

primarily enables monitoring of defects that have 

already begun to manifest. To prevent the sudden 

occurrence of such defects, it is essential to 

implement a system of periodic maintenance for 

the motor, particularly for its critical components. 

Therefore, the next objective of this research is

the development of a reliability model aimed at 

forecasting fault-free operation and scheduling 

maintenance activities.

The proposed reliability model will take into 

account potential stator failures, such as interturn 

short circuits, as well as structural integrity 

violations in the squirrel-cage rotor winding.
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II. INDUCTION MOTOR TRANSPORT 

SYSTEM OPERATION 8-STATE MODEL

Possible engine states with a diagnostic system 

during operation

When determining the extent of damage to 

electric motor elements, the primary concern is 

forecasting the time of trouble-free operation and 

the best time to perform restoration or debugging, 

all while keeping in mind the details of the 

transport operation.

In the event that one of the engine's structural 

components fails, the engine's parameters and 

characteristics will degrade, or the engine will 

stop working altogether, depending on the kind of 

failure. Thus, the structural diagram of engine 

reliability has a sequential form of the relationship 

of individual blocks, symbolizing the reliability of 

its components.

Therefore, to build a reliability model of the 

operating process, it is important to consider all 

states of the engine structural elements preceding 

the complete loss of operability. Depending on the 

nature of the malfunction, the symptoms that 

appear before the engine's performance 

completely disappear over varying durations. For 

maintenance or repair planning with a known 

restoration work volume and for averting 

emergency failures during operation, information 

on the occurrence of such states or the transition 

from one to another is crucial.

It was considered feasible to keep the engine 

running until a pre-emergency state was reached 

when describing all the conceivable engine states 

while it was operating, even if a parametric failure 

occurred in one of its elements. The engine must 

be taken out of operation and repair work must be 

completed before the emergency failure occurs, 

which is when the pre-emergency stage begins.

The reliability evaluation model is used to 

compile data for different scenarios in the 

presence of a diagnostic system. Remedial actions 

can be implemented at three points in the engine's 

operation, as shown in Fig. 4. Firstly, when the 

diagnostic system detects a defect in one of the 

elements early on. Secondly, during extended 

operation, when the defects are being detected 

gradually until they reach a critical stage of 

development. For the last time, this is after an 

emergency stop.

Fig. 4. Operating diagram of an induction motor with a diagnostic system (authors’ own 

elaboration).

Maintaining restoration operations between 

scheduled and emergency maintenance (Fig. 4) is 

the most rational approach. Emergency repairs are 

significantly more complex and expensive than 

those performed preventively. A reliability model 

based on the failure behavior of each structural 

component allows determining optimal 

restoration timing, especially in transport 

applications.

The proposed model defines eight motor 

states:

S0 – fully operational: the engine operates 

within nominal parameters. However, deviations 

such as increased temperature, vibration, 

overload, or frequent startups may initiate early-

stage faults. 

S1 – stator parametric failure: partial 

performance degradation caused by inter-turn 

short circuits in the stator winding. These faults 

are typically due to insulation breakdown from 

overloads or mechanical issues (e.g., bearing 

seizure), as well as environmental factors like 

moisture ingress. Resulting vibration can 

propagate damage to the rotor and bearings, 

increasing power losses and the risk of emergency 

shutdown.

S2 – bearing parametric failure: this state is 

characterized by increased vibration and heat, 
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indicating partial failure. Progressive bearing 

wear affects the entire motor system, accelerating 

stator winding insulation degradation and 

potentially leading to complete motor failure. 

Early detection of abnormal vibration levels is 

critical. 

S3 –rotor parametric failure: this condition 

is caused by degraded contact in the squirrel-cage 

rotor windings. Poor soldering quality, material 

fatigue, or thermal stress may lead to broken or 

loosened rotor bars. The resulting current 

imbalance and increased vibration accelerate 

rotor wear and reduce operational stability. Under 

peak loads or during startup, this condition may 

lead to complete rotor failure. Restoration 

involves rewilding or replacing damaged rotor 

bars to restore structural and electrical integrity.

S4 – critical stator condition (pre-failure): 

the stator winding is subjected to significant 

thermal stress caused by prolonged inter-turn 

short circuits. Even minor overloads or frequent 

startup cycles further deteriorate the insulation, 

increasing the risk of sudden failure. The motor 

operates in a critical state with a high probability 

of emergency shutdown. Immediate intervention 

and corrective maintenance are required upon 

detection of this condition to prevent catastrophic 

damage.

S5 – critical bearing condition (pre-failure): 

excessive internal clearance and abnormal 

vibration suggest bearings are near failure. Small 

shocks or braking can lead to rotor eccentricity, 

rotor-to-stator contact, and structural damage. 

Prompt bearing replacement is necessary to avoid 

emergency stop.

S6 – critical rotor condition (pre-failure):

high temperatures and rotor vibration signal pre-

failure. Continued operation leads to rod 

deterioration and loss of output power. Urgent 

repair is required, potentially involving rewelding 

or full rotor replacement.

S7 – catastrophic failure: total inoperability 

due to failure of a major component (stator, rotor, 

or bearing). The motor ceases functioning and 

requires full restoration.

State-based model enables continuous 

monitoring and targeted maintenance planning. 

By linking diagnostic signals to these reliability 

states, the system allows for accurate prediction 

of failure progression, dynamic maintenance 

scheduling, and minimization of unscheduled 

downtimes.

Research on an 8-status model of the 

workflow of transport systems with induction 

motors

This study characterizes eight operational 

states of motor components using Kolmogorov-

Chapman state equations to assess the reliability 

of a transport system that includes induction 

motors. This assessment must take into account 

the intermediate state, which corresponds to the 

state of the motor before the accident for each 

structural component.

In Figure 5, the operating states of transport 

systems using induction motors are interpreted as 

follows:

- S0 – state of full operability,

- S1 – state of parametric stator failure,

- S2 – state of parametric bearing failure,

- S3 – state of parametric rotor failure,

- S4 – state of pre-accident stator failure,

- S5 – state of pre-accident bearing failure,

- S6 – state of pre-accident rotor failure,

- S7 – state corresponding to an inoperative 

state.

Fig. 5. An illustration of the eight-state model 

that describes how induction motors in 

transport vehicles operate: authors’ own 

elaboration.

Descriptions of the transition relationships 

between states in the operation process model are 

as follows:

1 – transition from state S0 to state S1 in the 

event of a stator parameter fault;

2 – transition from state S0 to state S2 in the 

event of a bearing parameter fault;

3 – transition from state S0 to state S3 in the 

event of a rotor parameter fault;
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4 – transition from state S1 to state S4 in the 

event of a pre-accident stator failure;

5 – transition from state S2 to state S5 in the 

event of pre-accident bearing failure;

6 – transition from state S3 to state S6 in the 

event of pre-accident rotor failure;

7 – transition from state S4 to state S7 in the 

event of induction motor failure;

8 – transition from state S5 to state S7 in the 

event of induction motor failure;

9 – transition from state S6 to state S& during 

induction motor failure;

1 – transition from state S1 to state S0 during 

stator repair;

2 – transition from state S2 to state S0 during 

bearing repair;

3 – transition from state S3 to state S0 during 

rotor repair;

4 – transition from state S4 to state S0 during 

stator repair;

5 – transition from state S5 to state S0 during 

bearing repair;

6 – transition from state S6 to state S0 during 

rotor repair;

7 – transition from state S7 to state S0 during 

induction motor repair.

The system presented is characterized by the 

following Kolmogorov-Chapman equations:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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,

,
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 =   −  −  

 =   −  −  

 =   −  −  
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(1)

Given the starting conditions:

( )
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S
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(2)

By utilizing the Laplace transformation, the 

subsequent system of linear equations is obtained:

( ) ( ) ( )
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( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

* * *

0 1 0 1 1

* * *

2 0 2 2 3 0

* * *

3 3 4 4 5 5

* *

6 6 7 7

* * * *

1 1 0 1 1 4 1

* * * *

2 2 0 2 2 5 2

* * *
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*
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* * * *
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* * * *
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*
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Q s


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(3)

III. RESEARCH RESULTS

The function ( )0R t is the reliability function 

that indicates the likelihood that a specific 

technical item is fit for use in terms of its 

reliability. The value of the readiness indicator for 

a given duration is numerically comparable to 

this. Reliability tests of an operating induction 

motor allowed for a quick identification of the 

effects of operational and reliability indicator 

modifications on diagnostic system state-

describing parameter values. Results were based 

on the severity ratings of system damage and 

repairs found in Table 1. The accepted values 

were calculated using average failure data and 

operational data obtained from railway energy 

companies [30–33].

Table 1.

Parameters for system reliability.

Parameter Value [1/h]

 0.00001

1 0.00002

2 0.000025

3 0.0000416

4 0.00013

5 0.000012

6 0.000125

7 0.0000167

8 0.0000125

9 0.0000137

 0.0208

1 0.0416

2 0.0208

3 0.0416

4 0.0516
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5 0.0208

6 0.0316

7 0.0116

Based on the inverse Laplace transform and 

the values from Table 1, the probabilities of the 

system tested being in distinct operating states are 

as follows, assuming equations (1)–(2) and 

exponential distribution.

The duration of testing for transport vehicle 

induction motor systems is one year:

( )8760T h=                      (4)

Although the calculations of the reliability 

function ( )0R t and the transition probabilities 

between states were performed for a single motor 

over an interval of 8,760 hours, the basis for the 

model was formed using generalized operational 

data from a group of 12 motors with a total 

runtime of TΣ = 105,120 hours. This provided 

reliability and stability of the parameters used in 

the simulation analysis.

Thus, the duration of one year refers not to 

the operating time of a single motor, but to the 

total calendar period during which the group of 

motors was monitored under real operating 

conditions.

The likelihood that the induction motor 

utilized in transportation vehicles will maintain its 

optimal 0R condition for the duration of one year:

( )0 1 0.999039097.R =              (5)

The likelihood of the induction motor in 

transport vehicles maintaining partial 

serviceability 1Q for the duration of one year:

( )1 0.000480307.Q t =                (6)

Considering the likelihood that the induction 

motor in transport vehicles will continue to be in 

the state of partial serviceability 2Q for the period 

of one year:

( )2 0.000480307.Q t =              (7)

One-year probability that the induction motor 

in transportation vehicles will continue to 

function at critical suitability level 3Q :

( )3 0.000479970.Q t =                (8)

One year prior to damage, the likelihood that 

the induction motor in a transportation vehicle 

will remain in the 4Q condition:

( )4 0.000000576.Q t =             (9)

One year prior to damage, the likelihood that 

the induction motor in a transportation vehicle 

will remain in the 5Q condition:

( )5 0.000000576.Q t =               (10)

One-year probability that the induction 

motor in a transportation vehicle will remain in 

the 6Q pre-damage condition:

( )6 0.000000576.Q t =               (11)

For a period of one year, the likelihood that 

the examined induction motor in transportation 

vehicles will persist in the 7Q state of 

unsuitability (destructive condition):

( )7 0.0000000481.Q t =            (12)

The reliability model presented in the article 

adopts the classical approach to building a 

Markov model of transitions between technical 

states of a system (in this case - an induction

motor), where the sojourn times in states are 

modeled using the exponential distribution. This 

choice is justified both theoretically and 

practically, and finds broad support in the 

scientific literature on reliability theory and 

stochastic processes.

The exponential distribution is the only 

continuous distribution that satisfies the 

memoryless property, which forms the 

mathematical foundation of a continuous-time 

Markov process. This allows for the formulation 

of the Kolmogorov-Chapman system of 

equations, as demonstrated in the article.

In the specialized literature [34], the 

exponential distribution is commonly adopted as 

a baseline law for describing the time between 

failures in technical system reliability models. In 

Trivedi’s work [35], the author emphasizes that 

models based on Markov processes with 

exponential distributions form the core of 

classical reliability analysis and enable efficient 

solutions for multi-state systems with state 

transitions.
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Therefore, for the initial construction of the 

reliability model, the exponential distribution of 

time to failure and recovery time was used, which 

is a classical assumption in Markov processes. 

This distribution can be considered a special case 

of the Weibull distribution when the shape 

parameter is equal to 1. Then, using the 

exponential reliability function R₀(t), the 

probability of occurrence of known conditions in 

the tested induction motor in vehicles should be 

calculated. To justify the applicability of the 

exponential distribution at the initial stage of 

modeling, a simulation analysis was conducted 

using the one-sample Kolmogorov–Smirnov test. 

The chosen model is considered acceptable 

at the early development stage, with the potential 

for further refinement based on the Weibull 

distribution once a sufficient amount of statistical 

data is collected under real operating conditions 

of the studied equipment.

As shown in Figure 6 , the probability values 

computed for the ( )0R t characteristic dictate the 

appropriate time intervals for the distinct states.

Understanding the time distribution of a 

diagnostic condition's likelihood requires creating 

a complex ( )0R t characteristic diagram. Figure 7 

displays the typical analysis results ( )( )0R t .

Relative to the ( )0R t characteristic Fig. 13, the 

computed probabilities of the various sets of 

states ( 0 1 2 3 4 5 6 7, , , , , , ,Q Q Q Q Q Q Q Q ) are located 

towards the bottom. Therefore, the characteristic 

( )( )0R t was shown with a range of changes in its 

value below 0.001 for the purpose of future 

analyses (Figure 7). Next, the points that reflect 

the probabilities of the occurrence of individual 

states ( )( )iQ t were annotated on the ( )0R t

characteristic. Time intervals during which 

specified probabilities of individual states occur 

are shown in the ( )( )0R t chart (Fig. 7). 

From Figure 7 the following intervals are 

obtained:

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

0.999039097 0 1230

0.000480307 1230 3840

0.000480307 1230 3840

0.000479970 3840 5620

0.000000576 5620 6980

0.000000576 5620 6980

0.000000576 5620 6980

0.000000048 6980

Q h

Q h

Q h

Q h

Q h

Q h

Q h

Q t h

= → 

= → 

= → 

= → 

= → 

= → 

= → 

= → 

Fig. 6. Reliability function during a one-year period of operation of an induction motor in a 

transport vehicle: authors’ own elaboration.
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Fig. 7. Detailed graph that shows the reliability function of an induction motor in a transport 

vehicle throughout a 8640 – hour operation period: authors’ own elaboration.

IV. DISCUSSION

The proposed model has a hierarchical 

(multi-level) structure, which enables step-by-

step diagnostics of the technical condition of 

traction motors and assessment of their reliability. 

The model includes the following three functional 

levels:

1. Local Level

At this level, the diagnostic system monitors 

and evaluates individual components and 

assemblies of the traction motor.

2. Functional Level

At this stage, information from various 

components is integrated within functional 

subsystems (units) that ensure the motor's 

operation.

3. System Level

This level provides a comprehensive 

(aggregated) assessment and forecasting of the 

overall technical condition of the motor, based on 

data from the previous levels and using reliability 

models.

The model supports scalability, modular 

implementation, and allows integration with 

existing SCADA systems and dispatcher control 

platforms. 

From the examination of the   features and 

the probability values   for the many conceivable 

states that occurred during the testing period, we 

can deduce the following about the induction 

motor in transportation vehicles: 

−The induction motor in transport vehicles 

reaches the serviceability state referred to as 

S0. Therefore, from 0 to 1230 [h], the object

tested remains in state S0. 

−Parametric damage states {S1, S2, S3}–

states of partial usability – develop during 

time 1T with the value of  1 3840T h= . 

Consequently, in the time interval

 1230; 3840 h , the object tested may be 

found in states {S1, S2, S3}, which are 

degrees of parametric damage, also known as 

partial serviceability states. Under such 

conditions, induction motors used in 

transport vehicles do not operate at their 

maximum efficiency.

−The value  2 5620T h= indicates the 

occurrence of state S4, which is a pre-failure 

or a pre-critical state of the stator. 

Consequently, in the time interval 

 3840; 5620 h , the object tested may be 

found in one of three states: parameter 

damage states (S1, S2, S3) or incomplete 

serviceability. Under these conditions, 
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induction motors used in transport vehicles 

can only perform specific tasks.

−The motor rotor and bearing were damaged 

prior to failure in states S5 and S6, as 

evidenced by the following test time, 3T . 

(  3 6980T h= ) represents the condition of the 

motor before damage. The object tested may 

be in a pre-damage condition or in states S5 

or S6 throughout the entire time interval 

 5620; 6980 h . States S5 and S6 are the 

most effective operating ranges of the 

induction motor tested in transport vehicles.

−State S7, i.e., the state of unfitness, occurred 

in the next test time, 4T . In the state of 

unfitness, or state S7, the object tested is in a 

time interval greater than 6980 hours, and 

induction motors in transport vehicles are 

damaged and cease to operate in this 

situation.

Damage to a technical facility that occurs 

gradually over time while it is being used is 

referred to as non-critical damage. This kind of 

damage is mostly caused by the natural 

deterioration that comes with ageing and by the 

effects of environmental conditions (such as 

temperature and pressure).

The calculated operational characteristics and 

periods for the object under consideration may be 

of decisive importance for its effective use and 

restoration planning.

Although this study does not directly compute 

statistical confidence intervals or perform 

Bayesian inference, the proposed reliability 

framework using Kolmogorov-Chapman state 

modeling is well-suited for future extensions 

involving Maximum Likelihood Estimation and 

Bayesian updating once sufficient empirical 

failure data become available.

The multi-element Markov model structure 

supports Bayesian updating as new failure data is 

collected during system operation. This is 

particularly useful for fleets, where real-time 

feedback can refine reliability predictions over 

time.

The model was built on the assumption that 

all components follow an exponential distribution 

of time to failure over the normal operating life of 

the engine.

The study is considered as a methodological 

base capable of being scaled and refined with the 

increase in available statistical information.

            

CONCLUSIONS

The study proposes and develops a 

diagnostic system for induction motors focused 

on monitoring the most common types of faults. 

The primary components under control include 

the stator winding, the rotor winding, and the 

bearing units. The key defects targeted for 

detection are turn-to-turn short circuits in the

stator winding, structural integrity failures in the 

squirrel-cage rotor winding, and abnormal 

vibration conditions of the bearings. The 

proposed diagnostic system enables monitoring of 

the onset and progression of these faults during 

motor operation. To prevent the occurrence of 

component defects, a reliability model has been 

proposed for forecasting failure-free operating 

periods and predicting the onset of critical 

conditions. Taking into account the specific 

nature of the selected failure types, the model 

incorporates eight operational states of the tested 

component, in accordance with diagnostic 

methodologies commonly applied to induction 

motors in transportation systems.

In developing the reliability model for the 

induction motor, state equations–also known as 

Kolmogorov-Chapman equations–are employed. 

Provided that failure rate data for individual 

components of the tested motor are available, 

reliability parameters have been calculated and 

validated through simulation. Based on the 

obtained reliability metrics, a system for 

scheduling maintenance and monitoring the 

condition of motor components is proposed. This 

system improves the overall reliability of the 

motor and reduces the risk of pre-failure or critical 

operating states. The proposed eight-level 

approach offers several advantages over classical 

reliability models, including more accurate 

localization of technical states, direct integration 

with diagnostic signals, and the ability to perform 

dynamic maintenance scheduling based on the 

current condition of the equipment.

A distinguishing feature of this study is the 

proposed and developed research strategy for 

complex technical systems, based on the 

sequence: failure statistics → diagnostic system 

→ reliability model. This approach enables the 

most objective construction of a reliability model 

aimed at preventing any type of failure through 

timely maintenance of system components. 

Determining the time periods when the analyzed 

technical system becomes unsuitable for further 

operation–or when certain components enter a 

potential risk zone for critical failure—also opens 
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opportunities for developing new strategies to 

improve the tested elements.

The operational characteristics obtained in 

this study for the selected test object (the 

induction motor) make it possible to define the 

optimal timing for repairs and to determine the 

end-of-life period, i.e., the point at which the 

motor is deemed fully unserviceable. This 

sequential development approach enhances both 

the control over the condition of induction motor 

components and the accuracy of reliability 

modeling.

The multi-element Markov model structure 

supports Bayesian updating as new failure data is 

collected during system operation. This is 

particularly useful for fleets, where real-time

feedback can refine reliability predictions over 

time. The presented model is flexible and can be 

adapted to work with complex probability 

distributions, such as the Weibull distribution. Its 

architecture supports expansion through the use of 

intelligent data analysis methods (data mining, 

machine learning), which opens up prospects for 

improving the accuracy of diagnostics and 

prognostics. The research component 

demonstrates scalability potential, making the 

model suitable for real-world application across 

various types of traction rolling stock.

The proposed new strategy for creating a 

predictive model of the technical system can be 

referred to as the " Strategy for planning updates 

of complex technical systems based on analysis of 

time to failure and condition monitoring status".

References

[1] Jun, N., & Jin, X. (2012). Decision support 

systems for effective maintenance operations. 

CIRP Annals, 61(1), 411–414. 

https://doi.org/10.1016/j.cirp.2012.03.065

[2] Alsyouf, I. (2007). The role of maintenance in 

improving companies' productivity and 

profitability. International Journal of Production 

Economics, 105(1), 70–78. 

https://doi.org/10.1016/j.ijpe.2004.06.057

[3] Tian, Y., Guo, D., Zhang, K., Jia, L., Qiao, H., & 

Tang, H. (2018). A review of fault diagnosis for 

traction induction motor. In 2018 37th Chinese 

Control Conference (CCC) (pp. 5763–5768). 

IEEE. 

https://doi.org/10.23919/ChiCC.2018.8484044

[4] Tanenkeu, F., & Kuznietsov, A. (2020). 

Applicability of hypothesis testing for onboard 

inter-turn short circuit detection in PMD drive. 

In 2020 15th International Conference on 

Ecological Vehicles and Renewable Energies 

(EVER) (pp. 1–6). IEEE. 

https://doi.org/10.1109/EVER48776.2020.92430

19

[5] Gangsar, P., & Tiwari, R. (2020). Signal-based 

condition monitoring techniques for fault 

detection and diagnosis of induction motors: A 

state-of-the-art review. Mechanical Systems and 

Signal Processing, 144, 106908. 

https://doi.org/10.1016/j.ymssp.2020.106908

[6] Almounajjed, A., Sahoo, A. K., Kumar, M. K., & 

Assaf, T. (2022). Fault diagnosis and 

investigation techniques for induction motor. 

International Journal of Ambient Energy, 43(1), 

6341–6361

https://doi.org/10.1080/01430750.2021.2016483

[7] Rauf, A., Usman, M., Butt, A., & Ping, Z. (2022). 

Health monitoring of induction motor using 

electrical signature analysis. Journal of Donghua

University (English Edition), 39(3), 265–271. 

https://doi.org/10.19884/j.1672-5220.202104001

[8] Stawowy, M., Rosiński, A., Paś, J., Duer, S., 

Harničárová, M., & Perlicki, K. (2023). The

reliability and exploitation analysis method of the 

ICT system power supply with the use of 

modelling based on rough sets. Energies, 16, 

4621. https://doi.org/10.3390/en16124621

[9] Fomin, O., Sulym, A., Kulbovskyi, I., Khozia, P., 

& Ishchenko, V. (2018). Determining rational 

parameters of the capacitive energy storage 

system for the underground railway rolling stock. 

Eastern-European Journal of Enterprise 

Technologies, 2(1 (92)), 63–71. 

https://doi.org/10.15587/1729-

4061.2018.126080

[10] Gundewar, S. K., & Kane, P. V. (2021). 

Condition monitoring and fault diagnosis of 

induction motor. Journal of Vibration 

Engineering & Technologies, 9, 643–674. 

https://doi.org/10.1007/s42417-020-00253-y

[11] Goolak, S., Liubarskyi, B., Riabov, I., Chepurna, 

N., & Pohosov, O. (2023). Simulation of a direct 

torque control system in the presence of winding 

asymmetry in induction motor. Engineering 

Research Express, 5, 025070. 

https://doi.org/10.1088/2631-8695/acde46

[12] Suechoey, B., Siriporananon, S., Chupun, P., 

Boonkhun, C., & Chompooinwai, C. (2021). 

Characteristic analysis and fault classification of 

large electric motor using vibration analysis. 

International Journal of Intelligent Engineering 

and Systems, 14(1), 124–133. 

https://doi.org/10.22266/ijies2021.0228.13

[13] Dehina, W., & Boumehraz, M. (2022). 

Experimental investigations of induction motors 

using signal processing methods for early 

detection of inter-turn faults. International 

Journal of Modelling and Simulation, 42(5), 855–

867. 

https://doi.org/10.1080/02286203.2021.2001635

[14] Gubarevych, O., Gerlici, J., Kravchenko, O., 

Melkonova, I., & Melnyk, O. (2023). Use of 

Park’s Vector Method for monitoring the rotor 

condition of an induction motor as a part of the 

https://doi.org/10.1016/j.cirp.2012.03.065
https://doi.org/10.1016/j.ijpe.2004.06.057
https://doi.org/10.23919/ChiCC.2018.8484044
https://doi.org/10.1109/EVER48776.2020.9243019
https://doi.org/10.1109/EVER48776.2020.9243019
https://doi.org/10.1016/j.ymssp.2020.106908
https://doi.org/10.1080/01430750.2021.2016483
https://doi.org/10.19884/j.1672-5220.202104001
https://doi.org/10.3390/en16124621
https://doi.org/10.15587/1729-4061.2018.126080
https://doi.org/10.15587/1729-4061.2018.126080
https://doi.org/10.1007/s42417-020-00253-y
https://doi.org/10.1088/2631-8695/acde46
https://doi.org/10.22266/ijies2021.0228.13
https://doi.org/10.1080/02286203.2021.2001635


PROBLEMELE ENERGETICII REGIONALE 4 (68) 2025

16

built-in diagnostic system of electric drives of 

transport. Energies, 16(13), 5109. 

https://doi.org/10.3390/en16135109

[15] Kłos, S., & Patalas-Maliszewska, J. (2018). 

Using a simulation method for intelligent 

maintenance management. In A. Burduk & D. 

Mazurkiewicz (Eds.), Intelligent Systems in 

Production Engineering and Maintenance –

ISPEM 2017 (Vol. 637, pp. 89–98). Springer, 

Cham. https://doi.org/10.1007/978-3-319-64465-

3_9

[16] Wang, H., Pham, H. Modeling Degradation with

Multiple Failure Modes Using Stochastic Processes.

IEEE Transactions on Reliability, 2011, 60(1), 180–

190. https://doi.org/10.1109/TR.2010.2104210

[17] Liu, Y.-Y., Chang, K.-H., & Chen, Y.-Y. (2023). 

Simultaneous predictive maintenance and 

inventory policy in a continuously monitoring 

system using simulation optimization. Computers 

& Operations Research, 153, 106146. 

https://doi.org/10.1016/j.cor.2023.106146

[18] Tan, D., Makis, V., Jafari, L., & Yu, J. (2015). 

Optimal maintenance policy and residual life 

estimation for slowly degrading systems under 

condition monitoring. Reliability Engineering & 

System Safety, 134, 198–207. 

https://doi.org/10.1016/j.ress.2014.10.015

[19] Spyropoulos, D. V., & Mitronikas, E. D. (2012). 

Induction motor stator fault diagnosis technique 

using Park vector approach and complex 

wavelets. In 2012 XXth International Conference 

on Electrical Machines (pp. 1730–1734). IEEE. 

https://doi.org/10.1109/ICElMach.2012.6350114

[20] Örgüt, O., Sahin, I., & Güneş, E. O. (2022). 

Detection of incipient inter-turn short-circuit 

faults by artificial intelligence classifiers. In 2022 

24th European Conference on Power Electronics 

and Applications (EPE'22 ECCE Europe) (pp. 1–

10). IEEE.

[21] Liu, D., Jiang, B., & Cheng, D. (2020). A PSO 

approach for the integrated maintenance model. 

Reliability Engineering & System Safety, 193, 

106625. 

https://doi.org/10.1016/j.ress.2019.106625

[22] Ananiasmuxiri, C. P., et al. (2019). Thermal 

analysis of an induction motor subjected to inter-

turn short-circuit failures in the stator windings. 

In 2019 International Conference on Industrial 

Engineering, Applications and Manufacturing 

(ICIEAM) (pp. 1–5). IEEE. 

https://doi.org/10.1109/ICIEAM.2019.8743076

[23] Gubarevych, O., Goolak, S., & Golubieva, S. 

(2022). Systematization and selection of 

diagnosing methods for the stator windings 

insulation of induction motors. Revue Roumaine 

des Sciences Techniques – Série 

Électrotechnique et Énergétique, 67(4), 445–450.

[24] Antonino-Daviu, J. A., & Strangas, E. G. (2022). 

Fault diagnosis, prognosis, and reliability of 

electric motors and drives: Open questions, 

challenges and perspectives. In 2022 

International Conference on Electrical Machines 

(ICEM) (pp. 731–737). IEEE. 

https://doi.org/10.1109/ICEM51905.2022.99107

91

[25] Arhun, S., Migal, V., Hnatov, A., Ponikarovska, 

S., Hnatova, A., & Novichonok, S. (2020). 

Determining the quality of electric motors by 

vibro-diagnostic characteristics. EAI Endorsed 

Transactions on Energy Web, 7(29), e6. 

https://doi.org/10.4108/eai.13-7-2018.164101

[26] Cruz, S. M. A., & Cardoso, A. J. M. (2001). 

Stator winding fault diagnosis in three-phase 

synchronous and asynchronous motors by the 

extended Park’s vector approach. IEEE 

Transactions on Industry Applications, 37(5), 

1227–1233. https://doi.org/10.1109/28.952496

[27] Zheng, J., Cao, S., Pan, H., & Ni, Q. (2022). 

Spectral envelope-based adaptive empirical 

Fourier decomposition method and its application 

to rolling bearing fault diagnosis. ISA 

Transactions, 129(B), 476–492. 

https://doi.org/10.1016/j.isatra.2022.02.049

[28] Borghesani, P., Ricci, R., Chatterton, S., & 

Pennacchi, P. (2013). A new procedure for using 

envelope analysis for rolling element bearing 

diagnostics in variable operating conditions. 

Mechanical Systems and Signal Processing, 

38(1), 23–35. 

https://doi.org/10.1016/j.ymssp.2012.09.014

[29] Gyftakis, K. N., Cardoso, A. J. M., & Antonino-

Daviu, J. A. (2017). Introducing the filtered 

Park’s and filtered extended Park’s vector 

approach to detect broken rotor bars in induction 

motors independently from the rotor slots 

number. Mechanical Systems and Signal 

Processing, 93, 30–50. 

https://doi.org/10.1016/j.ymssp.2017.01.046

[30] U.S. Department of Defense. (1995). MIL-

HDBK-217F: Reliability prediction of electronic 

equipment. https://www.quanterion.com/wp-

content/uploads/2014/09/MIL-HDBK-217F.pdf

(Retrieved April 27, 2025).

[31] Choudhary, K., & Sidharthan, P. (2015). 

Reliability prediction of electronic power 

conditioner (EPC) using MIL-HDBK-217 based 

parts count method. In 2015 International 

Conference on Computer, Communication and 

Control (IC4) (pp. 1–4). IEEE. 

https://doi.org/10.1109/IC4.2015.7375644

[32] McLeish, J. G. (2010). Enhancing MIL-HDBK-

217 reliability predictions with physics of failure 

methods. In Proceedings - Annual Reliability and 

Maintainability Symposium (RAMS) (pp. 1–6). 

IEEE.

https://doi.org/10.1109/RAMS.2010.5448044

[33] Ministry of Industry and Information Technology 

of the People's Republic of China. (2006). GJB-Z 

299C-2006: Reliability prediction methods for 

defense industry systems. 

https://doi.org/10.3390/en16135109
https://doi.org/10.1007/978-3-319-64465-3_9
https://doi.org/10.1007/978-3-319-64465-3_9
https://doi.org/10.1109/TR.2010.2104210
https://doi.org/10.1016/j.cor.2023.106146
https://doi.org/10.1016/j.ress.2014.10.015
https://doi.org/10.1016/j.ress.2019.106625
https://doi.org/10.1109/ICIEAM.2019.8743076
https://doi.org/10.1109/ICEM51905.2022.9910791
https://doi.org/10.1109/ICEM51905.2022.9910791
https://doi.org/10.4108/eai.13-7-2018.164101
https://doi.org/10.1109/28.952496
https://doi.org/10.1016/j.isatra.2022.02.049
https://doi.org/10.1016/j.ymssp.2012.09.014
https://doi.org/10.1016/j.ymssp.2017.01.046
https://www.quanterion.com/wp-content/uploads/2014/09/MIL-HDBK-217F.pdf
https://www.quanterion.com/wp-content/uploads/2014/09/MIL-HDBK-217F.pdf
https://doi.org/10.1109/IC4.2015.7375644
https://doi.org/10.1109/RAMS.2010.5448044


PROBLEMELE ENERGETICII REGIONALE 4 (68) 2025

17

https://www.codeofchina.com/standard/GJBZ29

9C-2006.html

[34] Rausand M., Høyland A. (2004). System 

Reliability Theory: Models, Statistical Methods, 

and Applications. Wiley-Interscience.

[35] Trivedi K. S. (2002). Probability and Statistics 

with Reliability, Queuing, and Computer 

Science Applications. Wiley.

Information about authors.

DUER Stanisław 

Professor Dr. hab. Engineer,

Technical University of 

Koszalin, Koszalin, Poland.

Scientific interests: research of 

reliability of complex technical 

objects

  E-mail:       

stanislaw.duer@tu.koszalin.pl

ORCID: 0000-0001-9627-015X

MELKONOVA Inna

Candidate of Technical Sciences 

(Ph.D.), Associate Professor,

Volodymyr Dahl East Ukrainian 

National University, Kyiv, Ukraine.

Scientific interests: development of 

new technologies and methods to 

reduce losses of electrical energy 

during production, transmission and 

consumption

E-mail: melkonova@snu.edu.ua

ORCID: 0000-0001-6173-1470

GUBAREVYCH Oleg

Сandidate of Technical 

Sciences, Associate Professor,

Educational and Scientific 

Kyiv Institute of Railway 

Transport, National Transport 

University, Kyiv, Ukraine.

Scientific interests:

development of diagnostic 

methods for electromechanical 

systems

E-mail: oleg.gbr@ukr.net

ORCID: 0000-0001-7864-

0831

WOŹNIAK Marek

Doctoral School, Technical 

University of Koszalin, 

Koszalin, Poland.

Scientific interests: research of 

reliability of complex technical 

objects

E-mail:

  marek.wozniak@s.tu.koszalin.pl

ORCID: 0000-0002-4314-5790

KYRYCHENKO Oleksandr

Candidate of Technical 

Sciences, Associate Professor, 

Educational and Scientific 

Kyiv Institute of Water 

Transport named after Hetman 

Petro Konashevych-

Sahaidachny, National 

Transport University, Kyiv, 

Ukraine.

Scientific interests: modeling 

of electrical equipment and 

automation of water transport

E-mail: 

oskyrychenko@gmail.com

ORCID: 0000-0003-0545-

4493

MURAVIOV Volodymyr

Candidate of Physical and 

Mathematical Sciences, Associate 

Professor, Educational and Scientific 

Kyiv Institute of Railway Transport, 

National Transport University, Kyiv, 

Ukraine.

Scientific interests: theory of power 

electrical circuits of railway transport 

equipment

E-mail: 

muravyov_vm@gsuite.duit.edu.ua

ORCID: 0000-0002-3682-7435

https://www.codeofchina.com/standard/GJBZ299C-2006.html
https://www.codeofchina.com/standard/GJBZ299C-2006.html
mailto:stanislaw.duer@tu.koszalin.pl
mailto:melkonova@snu.edu.ua
mailto:oleg.gbr@ukr.net
mailto:marek.wozniak@s.tu.koszalin.pl
mailto:oskyrychenko@gmail.com
mailto:muravyov_vm@gsuite.duit.edu.ua

