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Abstract. Wind power has become more popular due to an increase in energy demand and the rapid decline in
conventional fossil fuels. This paper addresses the rising demand for accurate short-term wind power forecasting,
which is critical for minimizing the impacts on grid operations and reducing associated costs. The objective is to
develop an innovative deep learning (DL) model that integrates a convolutional neural network (CNN) with a
gated recurrent unit (GRU) to enhance forecasting precision for day-ahead applications. In pursuit of these
objectives, the CNN GRU model was rigorously tested and compared against three additional models: CNN with
bidirectional long short-term memory (BiLSTM), extreme gradient boosting (XGBoost), and random forest (RF).
Key performance metrics—namely, mean absolute error (MAE), mean squared error (MSE), root mean squared
error (RMSE), and the coefficient of determination (R?)—were employed to assess the efficacy of each model.
Statistical validation was also performed using the Diebold-Mariano test to establish significant differences in
performance. The most important results reveal that the CNN GRU model outperformed the other models,
achieving a MAE of 0.2104 MW, an MSE of 0.1028 MW, an RMSE of 0.3206 MW, and an R? of 0.9768. These
findings underscore the model's superior accuracy and reliability in the realm of short-term wind power
forecasting. The significance of this research resides in its demonstration of the CNN GRU model as an effective
and practical instrument for renewable energy forecasting.
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O prognoza pe termen scurt a puterii energiei eoliene prin utilizarea invitarii automate si a sistemelor
hibride de Deep Learning
Sunku V.S., Namboodiri V., Mukkamala R.B.
Scoala de Energie si Tehnologie Curata, Institutul National de Management si Cercetare in Constructii,
Hyderabad, India.

Rezumat. Energia eoliand a devenit mai populard datoritd cresterii cererii de energie si scaderii rapide a
combustibililor fosili conventionali. Aceastd lucrare abordeaza cererea in crestere pentru prognoza precisi a
energiei eoliene pe termen scurt, care este esentiald pentru minimizarea impactului asupra operatiunilor retelei si
reducerea costurilor asociate. Obiectivul este de a dezvolta un model inovator de invatare profunda (DL) care sa
integreze o retea neuronald convolutionala (CNN) cu o unitate recurenta convolutionala (GRU) pentru a imbunatati
precizia prognozei pentru aplicatiile de zi inainte. In urmarirea acestor obiective, modelul CNN GRU a fost testat
riguros si comparat cu trei modele suplimentare: CNN cu memorie bidirectionald de lunga duratd (BiLSTM),
intensificare a gradientului extrem (XGBoost) si padure aleatoare (RF). Valorile cheie de performanta - si anume
eroarea medie absolutd (MAE), eroarea medie patratica (MSE), eroarea medie patraticd (RMSE) si coeficientul de
determinare (R?) - au fost folosite pentru a evalua eficacitatea fiecarui model. Validarea statistica a fost efectuata
si folosind testul Diebold-Mariano pentru a stabili diferente semnificative de performantd. Cele mai importante
rezultate aratd ca modelul CNN GRU a depasit celelalte modele, realizand un MAE de 0,2104 MW, un MSE de
0,1028 MW, un RMSE de 0,3206 MW si un R? de 0,9768. Aceste constatari subliniaza acuratetea si fiabilitatea
superioara a modelului in domeniul prognozarii energiei eoliene pe termen scurt. Semnificatia acestei cercetari
rezidd in demonstrarea modelului CNN GRU ca instrument eficient si practic pentru prognoza energiei
regenerabile.

Cuvinte-cheie: energie eoliand, prognoza, deep learning, energie regenerabild, metrici de performant.
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KpPaTKOCPOYHOE NPOTHO3MPOBAaHHE BETPOIHEPTETHKH, YTO HMMEET pElIaloliee 3HAuCHHWE Ui MHHUMH3ALUH
BO3JICHCTBUS Ha pPabOTy CeTH M CHIKEHHsS CBS3aHHBIX C O3THM 3arpar. Llems cocrouT B pa3zpaboTke
HHHOBAIMOHHOMN Mo IesH Tiry6okoro ooyuenus (DL), koTopast HHTErpUpyeT cBepTouHyFo Helipornyo ceTh (CNN)
C YIpaBIsieMbIM peKyppeHTHBIM 010koM (GRU) 1t moBBIIIEHUS TOYHOCTH IIPOTHO3UPOBAHUS I IPHUIIOKESHUH
Ha neHb Buepea. g noctmxenns stux neneit mogens CNN GRU Opina TImaTensHO IpOTECTHPOBaHA U CPaBHEHA
¢ TpeMs nononHuTenbHBIMU MozemsiMu: CNN ¢ IByHanpaBiIeHHON NOJTOBPEMEHHOH KPaTKOCPOUHOH MaMSThIO
(BILSTM), skctpeMansHbIM TpaaueHTHBIM OyctuaroM (XGBoost) u ciyuaiineiv mecom (RF). Kiouessie
MOKa3aTeId MPOU3BOIUTEIFHOCTH, a UMEHHO cpenHsas abcomotHas ommubka (MAE), cpemnsas kBampaTtHdHas
ommbOka (MSE), cpennexBanpatudeckas omnbka (RMSE) u koadpdununent nerepmunanyu (R?), HCroab»30BaInCh
JUIsl OUeHKH OJddekTHBHOCTH Kaxaoi Mozaenu. CraTucTHyecKkas IpoBepKa Takke ObUla BBIIOJHEHA C
ucroinp3oBaHueM  Tecra  Jlubonma-MapmaHo — JuIs  YCTaHOBIEGHMS — CYIIECTBEHHBIX  pa3liMuuii B
npousBoauTeabHOCTH. Hanbomnee BakHbIe pe3ynbTaThl okasbiBaroT, uto Moaeiab CNN GRU mpe3onuia npyrue
monenu, nocturays MAE 0,2104 MBt, MSE 0,1028 MBT, RMSE 0,3206 MBT u R? 0,9768. 3T pe3ynbraThl
MOAYEPKUBAIOT MPEBOCXOIHYIO TOYHOCTh M HA/IC)KHOCTh MOJENIHU B 00J1aCTH KPaTKOCPOUYHOTO MPOTHO3UPOBAHHMS
BETPOIHEPTeTHKH. 3HAYMMOCTh 3TOTO HCClemoBaHMA 3akimodaercs B aemoHcrpannu moxemn CNN GRU xkak

3((eKTUBHOTO H MPAKTUIHOTO HHCTPYMEHTA U IPOTHO3UPOBAHUSI BO30OHOBIISIEMON SHEPTHHL.
Knroueswie cnoea: wind power, forecasting, deep learning, renewable energy, performance metrics.

INTRODUCTION

The use of renewable energy sources offers
numerous advantages, not only in terms of energy
generation but also in ecological preservation, en-
suring a sustainable future for generations to
come. Among the various renewable energy
sources, wind and solar power have attracted sig-
nificant attention and are expected to dominate
the energy landscape soon. Renewable energy has
a crucial advantage in its ability to minimize the
release of greenhouse gases. By mitigating these
emissions, the adverse effects of rising tempera-
tures can be avoided, which poses a serious threat
to the planet. Therefore, the widespread adoption
of wind and solar energy as renewable sources
will undoubtedly help alleviate these conse-
quences. There has been a significant increase in
the use of renewable energy, particularly wind en-
ergy, over the past few years. This sector has now
become a crucial component of the global energy
supply. This growth has been driven by rising en-
ergy demands, increasing fossil fuel prices, and
the urgent need to reduce carbon dioxide emis-
sions. When considering the various renewable
energy sources available globally, wind and solar
energy are significantly more abundant compared
to other options [1].

Wind energy is considered one of the primary
forms of renewable energy and is experiencing a
significant increase in its utilization. In compari-
son to traditional power sources, India has a vast
amount of wind energy reserves. Still, its genera-
tion is subject to the weather and geographical
conditions, resulting in unpredictable patterns that
are highly variable. Various factors such as wind
speed, direction, ambient temperature, humidity,
and altitude will affect wind power production.
The significance of wind power as a prominent

energy source in India is gradually increasing.
With wind energy prediction, it is imperative to
conduct thorough research to explore the possibil-
ities of leveraging this valuable resource [2]. Ac-
curately predicting wind power generation is cru-
cial for successful integration into the electrical
grid. The main impediment to the growth of wind
power integration in the power grid is the unpre-
dictable and variable nature of wind speeds.
Achieving a delicate balance between power sup-
ply and demand is a significant challenge for dis-
tribution networks due to the constant fluctuations
in wind power generation. As a result, accurately
predicting wind power presents a significant chal-
lenge that can have a major impact on the efficient
operation of power systems. Wind power genera-
tion is characterized by its stochastic nature, stem-
ming from the unpredictable and variable behav-
ior of wind. To minimize the uncertainty in the
system caused by the variability of wind energy,
it is crucial to develop more accurate and reliable
forecasting models. These models can signifi-
cantly enhance the profitability of power plants by
providing more precise output projections [3].
Furthermore, wind power prediction, using cut-
ting—edge algorithms, optimizes the integration of
power generation with the electricity grid [4]. Re-
liable short-term wind power forecasting is cru-
cial for integrating wind power into the grid seam-
lessly and reducing the load on peak regulation
and frequency control within the power system.
[5]. The primary objective of wind power fore-
casting is to mitigate the inherent uncertainty as-
sociated with wind patterns, thereby enabling a
greater degree of wind energy integration. It is
also important for optimizing dispatch operations,
planning maintenance activities, and determining
the necessary operating equipment, among other
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critical factors [6]. The varying weather patterns,
particularly wind speed and direction, emphasize
the need to address these obstacles. In the ongoing
energy transition, wind power generation is
emerging as a frontrunner. This is primarily due
to its environmentally friendly nature and abun-
dance [7].

Wind power forecasting can be categorized
based on time horizons or the methodology used.
Depending on different time frames, wind power
forecasting can be classified as short-term and
long-term. Improved results are achievable due to
the advancement of state-of-the-art algorithms
and the introduction of more sophisticated com-
putational methods. To overcome the intermittent
characteristics of wind power and enhance the re-
liability of the power supply system, it is essential
to secure reserve capacity. This reserve ensures a
continuous power supply, even during periods
when wind power is insufficient [8]. Neverthe-
less, the reserve capacity indirectly influences the
overall expenditure, emphasizing the importance
of employing an efficient forecasting strategy [9].
The accurate prediction of power output is crucial
for developing a well-structured strategy that con-
siders the varying levels of power generation.
This helps minimize the need for standby capacity
in the power grid, resulting in lower operational
costs for the power system [10]. Understanding
the wind energy forecast is essential to meet the
increasing demand for a reliable power supply for
industries. Hence, accurate prediction of wind
power generation has become a prominent focus
of research in literature. To promote ecological
development and meet the increasing demand for
electricity, it is crucial to conduct research on pre-
dicting wind power generation.

Previous research has shown that traditional
statistical methods have been effectively used to
forecast time series data in various applications.
However, the existence of nonlinearity and
irregularity in time series data, as well as the
possibility of additional errors, can sometimes
affect their suitability for predicting wind power
output. The complexity of wind power generation
is due to the influence of multiple variables,
making it challenging to forecast accurately using
any single model or approach [11]. Machine
learning (ML) and deep learning (DL)
frameworks can independently adapt and learn,
making them ideal for efficiently managing the
dynamic, non-linear, and complex attributes
associated with wind power [12]. Achieving
precise results with minimal errors in predicting
wind power generation requires the use of various

models and statistical tools. The feed-forward
neural networks (FANN) were used to forecast
daily average wind energy generation. The results
demonstrate that neural networks are a viable
solution for identifying patterns of energy
estimation evolution [13]. The performance of
regression trees in predicting wind power in
distribution networks in Cyprus has been
evaluated, resulting in a root mean square error of
0.0242 [14]. The short-term wind power
generation of a wind power plant in Pakistan was
predicted using GRU and Autoregressive
Integrated Moving Average models. The results
indicated that the GRU model was the most
effective among the others, showing high
accuracy and minimal errors [1]. The comparison
of Autoregressive Moving Average with
multilayer perceptron feed-forward architecture
and Adaptive Neuro-fuzzy Inference Systems
(ANFIS) shows that artificial neural networks
(ANNSs) and ANFIS are effective for short-term
wind power forecasting [15]. LSTM has been
effectively used to enhance the reliability and
accuracy of wind power generation forecasting
through a multi-step predictive model [16].
Harrou et al. [17] proposed a variational
autoencoder (VAE) with a self-attention model.
The results show that the proposed model
outperforms other models. Recently, ensemble-
based models also exhibited better prediction
capabilities [18]. The LSTM and BiLSTM models
have found extensive application in various
domains, such as wind speed/power, solar power,
solar irradiance, and electrical load forecasting.
These models utilize historical data to make
accurate predictions in these areas. The literature
did not mention the use of hybrid models,
particularly CNN GRU, in forecasting various
parameters in the power sector. Thus need of
performance improve models are essential and
this motivates to conduct the present study. The
present study aims to improve short-term wind
power generation forecasting by improving the
current cutting-edge prediction models. Deep
learning models have been considered to achieve
accurate short-term wind power forecasting. The
present study proposes two DL frameworks for
predicting the short-term day-ahead wind power
generation in megawatts (MW) of an Indian wind
power plant. These models are the CNN and Bi-
directional LSTM (Bi-LSTM)  models,
collectively referred to as the CNN BiLSTM
model. Additionally, the CNN GRU architecture,
referred to as CNN GRU, is also used to forecast
the short-term day-ahead wind power generation
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(MW). These frameworks aim to enhance
efficiency and facilitate accurate data forecasting
from a real-time environment. The proposed
study is capable to implement in the wind farms
for the wind power prediction applications.

I. METHODOLOGY
DATA COLLECTION

The importance of renewable energy cannot
be overemphasized. One of the strategies em-
ployed by the Indian Government to promote this
cause is the implementation of power exchange
through the interstate transmission system. To
gather information on short-term wind power gen-
eration, secondary data was collected from an in-
tegrated paper mill in India participating in this
scheme. This paper mill is equipped with sixteen
wind turbines, each capable of generating 2 MW
of power, resulting in a total installed capacity of
32 MW. The power generated by these wind tur-
bines is then supplied to the distribution compa-
nies of the respective state. The dataset consists of
day-ahead wind power generation data in MW,
recorded at 15-minute intervals, spanning from
10/1/2016 to 10/20/2016. In total, there are 1920
data points available for analysis [19]. The data
was used for further analysis and integration with
deep learning models.

LSTM MODEL

LSTM networks, which are part of the recur-
rent neural networks (RNNs) category, enhance
memory retrieval by preserving previous infor-
mation [20]. Using backpropagation for training
improves the model's accuracy in predicting time
series data with varying time delays. The LSTM
model is specifically designed to address long-
term dependency problems and effectively over-
come the vanishing gradient problem. It is divided
into three distinct sections. The opening section
emphasizes the significance of data gathered in
the previous period, establishing its relevance or
potential for dismissal. In the following two sec-
tions, the focus is on integrating new data from
the input and transferring the updated information
from the current time step to the next time step.
This is done while considering the LSTM cycle as
a single time step.

These three sections of the LSTM unit are re-
ferred to as the forget gate, input gate, and output
gate.

An LSTM network consists of memory cells
that resemble individual layers of neurons in a

conventional feedforward neural network. In this
comparison, each neuron in the LSTM network
contains both a hidden layer and an ongoing state.
These gates effectively address the issue of van-
ishing gradient commonly encountered in RNNSs,
making LSTM networks widely utilized in vari-
ous time series prediction applications [21].

CNN BILSTM MODEL

The BILSTM architecture consists of two
LSTM layers, with one processing data in a for-
ward direction and the other in a backward direc-
tion. Unlike traditional LSTM models that operate
in only one direction, BILSTM considers both
preceding and succeeding data points. This ena-
bles a more comprehensive approach to decision-
making by leveraging historical and prospective
information [22]. The model performs both for-
ward and backward computations, enabling a bi-
directional exchange of time series data. This ap-
proach contrasts with conventional models, where
data moves linearly from the input layer to the
hidden layer and then to the output layer [23]. Us-
ing the LSTM twice helps the model learn long-
term dependencies and improve accuracy [24].

The CNN BIiLSTM hybrid model combines
the CNN, BILSTM, and a connection layer; the
model has been proposed to forecast the day
ahead power generation (MW) of a wind power
plant located in India. In this particular model, the
input first goes through the CNN layer, where
convolution operations and max-pooling are exe-
cuted, ultimately producing a newly generated
feature matrix. The BIiLSTM is fed with input
from the feature matrix extracted from the CNN.
The BIiLSTM then produces its hidden output,
which is directed through the connection layer
consisting of a linear layer. Finally, the connec-
tion layer returns the ultimate results [25]. The hy-
brid model architecture is illustrated in Figure 1
[23].

The interaction between input and output is
explained by the hybrid model. A univariate time
series forecasting model is constructed using a re-
cursive multi-step forecasting technique. To ac-
commodate the CNN input and output BiLSTMs,
the univariate time series needs to be adjusted
since the hybrid model employs supervised learn-
ing. When considering a univariate time series
sample p(1), p(2), ..., p(n) with a lag, the projected
value of p(e+1) can be obtained by following the
previously outlined steps. Subsequently, the one-
dimensional vector is reconstructed into a matrix



PROBLEMELE ENERGETICII REGIONALE 1 (65) 2025

with dimensions of (e+1), as demonstrated in
Equation 1, which outlines the process of gen-
erating the reconstructed sample matrix, ©.
where
6 =[PP, P?, PO pED] 1)
PO = [p(l), P(z),__P(E), [=1C) )]

The hybrid model uses a matrix R as its input,
formed by the preceding t column vectors

[P(1), P(2), ... P(¢)].The output, as depicted

in Equation (1), is the (¢ + 1) value. Once the
forecasting reaches step € + 1, the input vector
encompasses all the anticipated values, indicating
the successful completion of extrapolation [26].
The training process of the hybrid model for
forecasting the day ahead power generation (MW)
is outlined as follows:

» Start by removing any unnecessary ele-
ments, converting time data into a serial-
ized format, and splitting the data into
separate training and testing sets.

» To begin the training process, the pre-
processed time series data must be input
into the hybrid model.

» Use the trained model to make predic-
tions by feeding it with the training data.

» Apply the provided formulas to restore
the predicted data.

» A visual comparison should be created
between the observed and forecasted val-
ues, using both datasets to evaluate the
model's predictive accuracy.

CNN GRU MODEL

Input variables CNN layers

Bi-LSTM layers

Developed for complex data analysis, the CNN
GRU architecture combines CNNs and GRUs to
deliver powerful performance. This model stands
out for its innovative approach of combining the
spatial feature extraction capabilities of CNNs
with the temporal dependency modeling abilities
of GRUEs, resulting in a powerful and effective so-
lution. The extraction of essential spatial features
from input data sources is a crucial task in predict-
ing wind power generation, and CNNs play a vital
role in achieving this. These attributes are seam-
lessly integrated into the GRU layer, which is
well-known for its ability to capture temporal re-
lationships and historical capacity data. The over-
all architecture of the CNN GRU model proposed
in this study consists of four key layers: the input
layer, CNN layer, GRU layer, and output layer.
The CNN layer begins by extracting information
on day-ahead wind power generation. The pool-
ing layer uses convolution kernels to compute ad-
ditional feature data and expand the scope of the
convolution results. Next, the preprocessed wind
power generation data is inputted into the GRU
network for optimization training through a fully
connected layer. Within the GRU layer, the model
effectively learns the underlying patterns and in-
ternal variability, which are essential for ensuring
accurate predictions. The output layer ultimately
produces important forecasts, providing valuable
information on wind power generation. [27]. This
architecture allows for precise predictions of wind
power generation, which is advantageous for the
power sector. Figure 2 depicts the structure of the
hybrid prediction model using CNN GRU archi-
tecture.
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Fig. 1. CNN BIiLSTM hybrid model architecture [25].
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I1. PERFORMANCE METRICS

The models' performance was evaluated using
four main statistical metrics: mean absolute error
(MAE), mean square error (MSE), root mean
square error (RMSE), and coefficient of determi-
nation (R?), as outlined in Equations (2) to (5).

MAE =1/nzn:|O—F| 2)
k=1

MSE =1/n3’[0 - F[’ €)
k=1

RMSE = & /Zn:|O—F| (4)

nyia
2.[0-F]|
R2=1— k:l (5)

2[0-F]
k=1

In power generation forecasting, the formula for
calculating the error between the predicted and
observed power generation values is as follows: F
represents the expected power generation for a
specific time interval (15 minutes), and O repre-
sents the observed power generation for the same
interval. To further analyze the accuracy of the
predictions, the average predicted power genera-
tion (F) and the average observed power genera-
tion (O) are calculated. The number of observa-
tions (n) is also taken into consideration.

I11. RESULTS AND DISCUSSION

DATA PREPROCESSING

The preprocessing of data is a crucial step in
developing short-term wind power predictions.
Table 1 shows the statistical information of the
dataset. This stage involves using important

approaches to improve the quality of input data,
which will have a direct influence on prediction
accuracy. To ensure the continuity of data, the
missing values are to be removed. Additionally,
removing outliers, which are extreme data
variations, enhances model performance by
reducing undesirable noise during training.
Normalization involves standardizing the
variables to a common range between zero and
one. The process of normalization is essential
for preventing any single variable from
dominating the model's learning process. This
ultimately leads to more efficient model
convergence and improved accuracy [28].
After preprocessing, it was determined that the
dataset had no missing values. The data was
then normalized using MinMax Scaler to a
range of 0 to 1. After this, the preprocessed
dataset was divided into training and testing
sets. Out of the 1920 input points, 1527 (79.5%)
were used for training, while the remaining 393
(20.5%) were allocated for testing to evaluate
the model's predictive performance.

EXPERIMENTAL RESULTS OF CNN
BILSTM AND CNN GRU MODELS

The pre-processed data was used to analyse with
the CNN BiLSTM model. The proposed model is
a deep neural network and consists of two CNN
layers in the first stage. The output from the CNN
layers is then passed to the two Bi-LSTM layers
in the second stage. These Bi-LSTM layers are
responsible for analyzing information and
predicting time series data. The final stage
consists of two fully connected layers, which are
used to generate the predicted wind power output.
Number of hidden neurons are 31 and the total
weight coefficients including biases are 5101.
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Performance metrics are employed to evaluate the
accuracy of the predicted values produced by the

both the CNN BiLSTM and CNN GRU models
are set up with identical model and training

1.0

proposed model. To ensure a fair comparison,  parameters.
Table 1
Details of the dataset.
Count | Minimum | Maximum | Mean | Standard deviation
1920 | 0.00 31.48 8.356 | 8.435
Model Train vs Validation Loss - CNN GRU - Dayahead Generation (MW)
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Table 2
Performance metrics of various models.
Model MAE[MW] [ MSE[MW] [ RMSE[MW] [ R[]
Random forest 1.1907 1.9499 1.3964 0.7687
XG Boost 0.7694 0.6759 0.8221 0.9156
CNN GRU 0.2104 0.1028 0.3206 0.9768
CNN BIiLSTM 0.2725 0.1473 0.3838 0.9667

To calculate the adaptive learning rate for
parameters, the Adam optimizer considers the
first and second moments of the gradient. A
learning rate of 0.0001 is specified, and the MAE
is chosen as the loss function. The MAE focuses
only on the average absolute error of the predicted
values, without taking direction into account, thus
improving robustness against outliers. A batch
size of 32 and a total of 50 epochs are selected for
the experiment.

The test dataset is employed for forecasting once
the training process is completed. Figures 3
exhibit the learning curve of the CNN GRU
models, in predicting short-term wind power
generation. The learning curve is constructed to
assess the adequacy of the train and validation
datasets in representing the domain area. The
learning curves for both models indicate a
satisfactory model fit, as the training and
validation losses converge to a stable point with
minimal disparity between their final loss values.
Figure 4 illustrate the plot of the CNN GRU
model, showing the relationship between the
actual and predicted values over the last 350 data
points. To analyze and compare the results of
these models, several fundamental evaluation
indicators, namely MAE, MSE, RMSE, and R?,
are employed. The proposed model (CNN GRU)
is compared with CNN BIiLSTM, extreme
gradient boosting (XGBoost), and random forest
(RF). These indicators serve the purpose of
determining the disparity between the predicted
and actual values of short-term wind power
generation. The values of these indicators can be
found in Table 2. Notably, the R? score of the
CNN GRU model surpasses that of the CNN
BIiLSTM model, indicating a higher level of
accuracy in predicting wind power generation.
Furthermore, the CNN GRU model exhibits
significantly lower scores in terms of MAE, MSE,
and RMSE, further affirming the model's precise
predictive capabilities. It is worth mentioning that

the CNN GRU model demonstrated superior
performance across all metrics when compared to
CNN BIiLSTM model. Moreover, the research
presented a cutting-edge forecasting model
utilizing the CNN GRU framework. This
innovative model demonstrated a remarkable
enhancement in the accuracy of short-term wind
power generation prediction, surpassing the
performance of the CNN BiLSTM model. The
proposed CNN GRU model, with its exceptional
predictive power, signifies fair progress in the
domain of renewable energy.

CNN GRU model surpasses in capturing
prolonged dependencies in sequential data,
adeptly adjusts to diverse operational scenarios,
and consistently exceptional in evaluating the
performance criteria [27]. These attributes
collectively establish it as the better option for the
renewable energy sector, which seeks reliable and
precise planning as well as grid management.
When compared to alternative machine learning
models, the CNN GRU unified framework
excelled in short-term residential load forecasting
by achieving the lowest error rate, with MSE,
RMSE, and MAE values of 0.09, 0.31, and 0.24,
respectively [29]. The CNN GRU model's
learning curve demonstrates a satisfactory model
fit, indicating the absence of both overfitting and
underfitting. The performance of the CNN GRU
model was then compared with five other DL
models. In both scenarios, the CNN GRU model
demonstrated superior performance, achieving
the lowest values for the performance criteria
[30].

The CNN GRU model has the ability to undergo
training and application in conjunction with
various other factors that affect the production of
wind energy. The Diebold-Mariano test is
performed for CNN GRU and CNN BiLSTM.
The p-value is 0.0025 and indicates that the
performance of CNN GRU is significant as
compared to CNN BiLSTM.



PROBLEMELE ENERGETICII REGIONALE 1 (65) 2025

CONCLUSION

The current investigation outlines the primary
viewpoints and significant numerical findings
derived from the study into forecasting short-term
wind power generation. The significance of the
study is implementing a novel DL that effectively
combines CNN and GRU framework. Moreover,
the CNN GRU model surpasses the CNN
BiLSTM model in terms of performance. The
model's efficacy was substantiated through
rigorous experiments, resulting in a significant
decline in key performance metrics. In the current
study, the proposed methodology exhibited
exceptional precision in forecasting and surpassed
the performance of the CNN BIiLSTM model.
This was substantiated by the values of MAE,
MSE, RMSE, and R? which were recorded as
0.2104 MW, 0.1028 MW, 0.3206 MW, and
0.9768 respectively, highlighting its outstanding
performance. To enhance the efficiency of the
model in predicting short-term wind power
generation, it is advisable to integrate various
factors such as wind speed, direction, altitude, and
other operational dimensions. Additionally,
comparing the outcomes of power output
prediction using both multi and univariate data
would be beneficial. Furthermore, training the
model on a larger and more varied database would
enhance its reliability. The CNN GRU model
demonstrates  superior  performance  when
compared to other models, thus affirming its
viability for practical implementation in the
renewable energy sector.
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