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Abstract. The past decade has been characterized by considerable increase of the penetration level of
solar photovoltaic systems in energy systems throughout the world. At the same time, solar irradiance
has an intermittent nature. Thus, the efficient management of existing and new solar photovoltaic sys-
tems requires an accurate forecasting system of solar irradiance. The purpose of the paper is to develop
and validate a long-term forecasting model for solar irradiance. This purpose is achieved by applying of
clustering method and standard mathematical statistics. The modeling includes pre-processing of his-
torical data used for forecasting and post-processing of the types of days resulted from the clustering
analysis. Historical data include solar irradiance and sky coverage by clouds. Pre-processing supposes
bi-normalization of the solar irradiance in time and amplitude, as well as clustering, and post-processing
supposes denormalization to get the actual values. Error metrics and confusion matrix indices have been
used to assess the accuracy of the proposed forecasting method. Four different model variants have been
considered, which differ by pre-processing approach of initial data. The comparison of these model
variants shows that for better accuracy it is required to use seasonality aspects of solar irradiance. The
main result of paper is the created model, which can be used for the solar irradiance forecast with ac-
ceptable accuracy for this type of forecasting and for generating of the types of days for different annual
scenarios. The importance of paper results consists in the possibility of using of these scenarios for
feasibility assessment of the solar photovoltaic system and identifying of the best solutions for their
integration in the energy system.

Keywords: prediction, solar irradiance, forecasting, clustering, statistical error parameters, predictive
model, confusion matrix, scenario analysis.

DOI: 10.5281/zenodo0.3713424

UDC: 551.521.1

Prognoza pe termen lung al iradiantei solare
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Abstract. Pe parcursul ultimului deceniu, in intreaga lume, s-a inregistrat o crestere considerabild a numarului de
sisteme solare fotoelectrice conectate la sistemul electroenergetic. in acelasi timp, iradianta solari este
caracterizata de un grad inalt de intermitentd. Astfel, pentru un management eficient al sistemelor solare
fotoelectrice existente si viitoare este necesard existenta unui model de prognozare precisd a iradiantei solare.
Scopul lucrarii constituie elaborarea si verificarea unui model pentru efectuarea prognozei iradiantei solare pe
termen lung. Scopul inaintat este realizat prin utilizarea metodei clusterelor si statistica matematica. Elaborarea
modelului include etape de pregatire a datelor istorice necesare pentru realizarea prognozei si prelucrarea datelor,
obtinute 1n procesul de clusterizare si analizd. Datele istorice utilizate includ iradianta solara si nebulozitatea.
Procesul de pregatire a datelor initiale include procedeul de bi-normalizare si clusterizare a iradiantei solare si al
perioadei de stralucire a soarelui, iar prelucrarea rezultatului — procedeul de denormalizare pentru obtinerea
valorilor reale ale iradiantei solare. Acuratetea modelului propus este verificata cu ajutorul indicatorilor de eroare
si a matricei de confuzie. Sunt analizate patru variante ale modelului, care difera prin abordarea pregatirii datelor
initiale pentru modelare. Compararea acestor variante de modele pentru prognoza iradiantei solare au arétat cé,
pentru obtinerea unei precizii mai mari este necesar sa se tind cont particularitatile sezoniere ale iradiantei solare.
Cel mai semnificativ rezultat al lucrarii consta in crearea modelului care poate fi utilizat pentru prognoza iradiantei
solare cu o precizie acceptabila pentru acest tip de prognoza si generarea succesiunii tipului zilelor pentru diferite
scenarii anuale. Valoarea rezultatului obtinute in lucrare consta in posibilitatea utilizarii scenariilor anuale generate
pentru evaluarea fezabilitatii functionarii sistemelor solare fotoelectrice si identificarea celor mai bune solutii de
integrare a acestora in sistemul energetic.

Keywords: predictie, iradiantd solara, prognoza, clusterizare, parametri de eroare statistica, model de predictie,
matrice de confuzie, analiza scenariilor.
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Abstract. B mocneanee necATHICTHE 3HAYUTENBHO YBEIMYWIOCH YHCIO COJNHEYHBIX (HOTOIICKTPHICCKHX
YCTaHOBOK, MOJKITIOYEHHBIX K JIEKTPOIHEPIETUYECKIM CHCTEMaM 0 BCEMy MHpY. B To ke Bpems, comHedHast
Uppauanys IPEACTaBIsieT cOO0OH HEMOCTOSHHYIO BenuuuHy. [losTomy, M 3¢GQEKTHBHOTO yHpaBICHHS
CYIIECTBYIOIIMMHU U HOBOBBEJEHHBIMH B IKCILTYaTaI[HI0 MOIIHOCTSMH (POTODIIEKTPHIECKUX COTHEYHBIX CHCTEM
M 3KCIUTyaTallud 3JEKTPOIHEPIeTHYECKUX CHCTEM B HOPMAJIBHOM pEXHME TpeOyeTcsi TouHas MOJENb JUls
MPOTHO3a COJHEYHOH mppaauanuy. [ 1aBHOW Lenblo TaHHOW paboThl sBISETCS pa3paboTKa U MPOBEPKa MOJEIH
JUISL BBITTOJTHEHUSI JOJITOCPOYHOTO MPOTHO3a COJHEYHOH uppaauauuu. IlpeniokeHHas uenb B JaHHOW pabore
JOCTHTaeTCs C IIOMOLIBI0O METoJa KIJIACTepOB W MaTeMaTH4YeCKOW CTaTHCTHKH. Paspaborka Monenu
IpeaycMaTpUBaeT 3Tall MOJIrOTOBKH HCTOPHYECKHUX JaHHBIX JJIs IPOTHO3UPOBAHUS U 3Tar 00pabOoTKH U aHaIIM3a
pe3yJIbTaTOB, MOTYYEHHBIX B MpOIECCEe KiacTepu3anuu. Vcrmonp3yromuecs HCTOPUIECKHE JaHHBIC BKIFOYAIOT
COJIHEYHYIO MPPAJMAINI0 U CTENEHb IMOKPHITHS HeOeCHOTro cBoja obmakamu. [Iporiecc MOATOTOBKH MCXOMHBIX
JAHHBIX BKIIIOYAET MPOIIECC ON-HOPMAIHN3aLIH U KJIACTEPU3ALNH COITHEYHOI HPpanalvi U IIEPHO/Ia COTHEUHOTO
CBEUCHUS, a 00paboTKa pe3yspTaTa — IpoLece ICHOPMAIN3aiH. TOYHOCTh MPEAT0KEHHOH MOIEIIH IPOBEPSETCS
C TIOMOIIBIO CTAaHAAPTHBIX WHAMKAaTOPOB OIMMOOK ¥ MaTpuipl MyTaHWObl. [l cpaBHEHUS ObLIH
MPOAHATM3UPOBaHbl YETHIPE BapHaHTa MOIEIH, KOTOPHIE OTJIMYAIOTCS IOJXOJOM M THOATOTOBKH HMCXOIHBIX
JAHHBIX JUIA MojenupoBaHus. CpaBHEHHE 3THUX BapHaHTOB MOJeJed I0Ka3ajo, 4To JUIi IOJy4deHUs Ooiee
BBICOKOW TOYHOCTH HEOOXOJMMO YUUTHIBATH CE30HHBIE 0COOEHHOCTH COTHEUHOM UppaIuaIim.
I'maBHBEIM peE3yIbTaTOM pa6OTLI SABIACTCA TMOJY4Y€HHasA MOJCJIb, KOTOpas MOKET 6I>ITI:. HUCIIOJIb30BaHa JIJId
IMPOTHO3UPOBAHUA COJIHCUHOM uppaavanum c HpHeMHeMOﬁ TOYHOCTBIO IJIA 3TOr0 TUIIA IMPOTHO3UPOBAHUA U
TMOJIYYCHUA NOCJIE€A0BATCIIbHOCTU THUIIA JIHeI7[ JJIA pa3JIMYHbIX I'OJOBBIX CIICHAPUECB. LICHHOCTI) MOACIHU COCTOUT B
TOM, YTO 3TH CLEHAPHU MOTYT OBITh MCIIOJIB30BAHBI UL OLEHKH 3((PEKTUBHOCTH pabOTHI POTOIIEKTPHIECKUX
COJIHEUHBIX CHCTEM W HaXOXKACHHsS HaWIydlIMX PEUICHUH ISl WX HHTErPali B BIICKTPOIHEPTETHUECKYIO
CHCTEMY.
Keywords: mpexcka3aHue, COJHEYHas Hppaualys, KIAcTepU3alus, OMMOKM NPOTHO3MPOBaHHMS, MaTpuila
IIyTaHUIIbI, aHAIN3 CIIEHAPHEB.

. INTRODUCTION learning [7]. Some review papers indicate the
During the last years, all around the world current trends in the different time horizons

electricity generation from renewable energy esta_blished to perform forecasting, partitio_ned in
sources (RES) has been increasing constantly. [8] into very short-term (from seconds to minutes,

These increases led to transformation of energy ~ UP t0 one hour), short-term (from one hour to one
systems from highly centralized systems with ~ Week), medium-term (from one week to one
classical large power plants to systems with a  month), and long-term (from one month to one
growing number of territorial distributed small ~ Year) [8]. o o
plants based on RES [1,2]. The most significant Thu_s, the task of solar |rrad_|ance fprecastlpg is
increase  of installed capacity concerns @ crucial aspect for ensuring grid stability,
photovoltaic (PV) sources: from 22.8 GW at the ~ reliability and efficient management of the
end of 2009 to 480.6 GW at the end of 2018 [3]. ~ €xisting or new RES power capacity. Without
The PV source is highly intermittent and accurate predlct!on, it is difficult to promote
depends on meteorological and climate adequate practices in energy production,
conditions, such as solar irradiance, cloudiness, ~ transportation and transactions, and this fact
air temperature, air humidity, etc. The corjd_ucts to the_ re_d_uctlon of energy system
intermittency  poses  difficulties in grid  efficiency and reliability [4,6].
management with raising rate of electricity However, meteorological conditions depend
system penetration by solar PV systems, and  On period of day, season and year, and represent
represents great challenges for PV power  Nighly varying series of data [11], again making
generation forecasting [4]. In particular, solar long-term forecasting not easy to be carried out
irradiance is the main feature to be considered in [1’9'10]_- . .
short-term PV power forecasting [5] carried out During the last decade, different forecasting
by using different numerical techniques [6] and  techniques have been developed. The major
various methods for unsupervised and supervised ~ commonly used forecasting techniques are
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persistence methods, statistical methods, physical

methods, and hybrid methods [4,12].

Persistence method is the simplest method, but
with too low accuracy. This method assumes that
weather conditions at the certain moment in the
future will be the same as it is when the
forecasting is executed.

Statistical methods  (including  neural
networks) are mathematical models that use the
historical data to perform forecasting for next
periods. These methods are good for short-term
predictions due the fact that with increasing of the
forecasting period the errors are increasing. The
classical statistical techniques are defined by
considering the data as a time series [12,13].

Physical methods take into account the
physical aspects like topography, altitude,
obstacles sheltering, atmospheric conditions etc.
Often these methods are more accurate than other
methods. They offer very good accuracy for long
time horizons, but appliance of these methods
require initial data of good quality [13,14]. The
most used physical method is the Numerical
Weather Prediction (NWP) model. This complex
mathematical model usually requires to be run on
super computers, which limits the usefulness of
these models to very short time operation of
power system.

The most common and effective method is the
hybrid method, which represents a combination
between individual techniques and permits to
improve forecasting accuracy comparing with
applications of standalone methods benefiting
from the advantages of each model [4,7].
Conceptually, hybrid methods represent a multi-
stage approach to forecasting, which applies
different techniques at each stage [13,14]. For
instance:

o Satellite-imaging and  Artificial Neural
Networks (ANN) for predictions of global
solar irradiance on the horizontal surface for
temporal horizons between 30 and 120
minutes [15];

o Satellite-imaging and Support Vector Machine
(SVM) for intra-day predictions (in the range
of 15 to 300 minutes) [16];

o Satellite-imaging, Exponential Smoothing
State (ESS) and back propagated Multi-Layer
Perceptron (MLP) model for hourly
predictions [17];

e Autoregressive integrated moving average
(ARIMA) and ANN [18];

¢ ANN and Clear sky model [19]

e NWP and ANN [20]; etc.
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The next sections present a hybrid model
based on time-series, Clear-sky and k-Nearest
Neighbors (k-NN) methods for long-term solar
irradiance forecasting on the horizontal surface.

Il. CLUSTERING OF THE DAY TYPES AND

FORECASTING MODEL

The main goal of this paper is the creation of a
model for long-term solar irradiance forecasting.
As initial data for the solar forecasting model,
historical hourly data are used for the period of
1951 — 1990 for Chisinau (the capital of Republic
of Moldova, emplaced geographically in the
central part of country), and the data regarding
weather features (sky nebulosity and temperature)
obtaining from meteorological station from
Chisinau for period of one year period
(2018 — 2019).

For long-term forecasting, it is essential to
predict the daily or weekly amount of generated
energy. Theoretically, the daily solar irradiance in
clear sky conditions is distributed in accordance
with the Moon-Spencer model [21].

This model used the Sun position on the sky
with respect to the daytime and year time. Solar

Irradiance in this model includes Global
Horizontal Irradiance (GHI), Direct Normal
Irradiance (DNI) and Horizontal Diffuse

Irradiance (HDI) [10,22].

Data pre-processing phase
| Removing nighttime ‘

¥

| Normalization ‘

Data processing phase
|Clustering solar irradiance pattern }q—

| Training and forecast output ‘

Validation phase
| Denormalization ‘

i

|Actua| solar irradiance calculation ‘
¥
| Error calculation ‘

Acceptable error

Forecasting

Fig. 1. Proposed solar irradiance forecasting
model flowchart.
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GHI data is the main component considered
during forecasting in this paper. Besides historical
GHI data, GHI in Clear-sky conditions represents
the maximum GHI that can be received by PV
systems during a clear sky day. GHI in Clear-sky
conditions is constant for the same period of the
year. Additional data required for the proposed
model are cloud coverage of the sky, air
temperature and humidity.

The development of the proposed solar
irradiance forecasting model includes three
phases: data pre-processing phase, data
processing phase, and validation phase (Fig. 1).

A. Data pre-processing phase

The first phase of the proposed forecasting
model includes removing nighttime, and data
normalization. Removing nighttime supposes
excluding the period between sunset time of
previous day and sunrise time of the day
considered.

Considering that the solar irradiance is a
function of the sunshine period, which depends on
the year period, it is difficult to compare solar
irradiance  characteristics for days with
considerable different sunshine period (Table 1).
For clear-sky conditions the differences among
solar irradiance values in sunshine periods can be
observed in Fig. 2.
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Fig.2. Solar irradiance in clear-sky condition.

To allow the comparison between solar
irradiance data from different period of the year,
it is necessary to normalize the solar irradiance
data and the daily sunshine period (this process is
called bi-normalization).

The bi-normalization consists of the
representation of the solar irradiance and sunshine
time in relative units, both with values between 0
and 1 [10]. For this purpose, the daily sunshine
period for each day was limited from the sunrise
to the sunset time periods for all days. Then, to
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represent the solar irradiance time series with the
same number of points, the available data points
are used for data alignment within an
interpolation process [23] to obtain the same
number of points (20 points in this paper) at the
same locations onto the normalized horizontal
axis. On the wvertical axis, the daily solar
irradiance was divided by GHI in Clear-sky
conditions (the maximum solar irradiance) for this
period [10,13].

For simplifying comparison between types of
days in dependence of solar irradiance, for
example sunny days in summer and winter, the
normalization of solar irradiance was done
separately for each month.

Table 1
Sunrise and sunset time and daytime hours
Day Sunrise | Sunset Sunshine period
20-Mar | 06:07 18:15 12 h and 08 min
21-Jun | 04:08 | 20:02 15 hand 54 min
23-Sep | 05:51 18:00 12 h and 09 min
21-Dec | 07:47 16:17 8 h and 30 min

In order to prepare data for clustering of daily
solar irradiance and obtaining better accuracy of
clustering, three types of patterns have been
proposed:

1. Normalized solar irradiance patterns NP;

2. Sorted normalized solar irradiance patterns
SNP;

3. Differences between
irradiance patterns DNP.
For creating NP, the data regarding solar

irradiance and sunshine time were normalized

according to the procedure described above [10].
For creating SNP, the normalized solar

irradiance data have been sorted in the ascending

order. The DNP have been determined by
considering two representative days: one for clear
sky conditions, and one for cloudy sky conditions.

Beginning from the irradiance features of these

two days, for each day the normalized solar

irradiance differences were calculated and sorted
in ascending order.

The results of normalization of the solar
irradiance and sunshine period are shown in
Fig. 3. In particular, the available data are
represented in bi-normalized form in Fig. 3a, and
are sorted in the ascending order in Fig. 3b.

For clustering, it has been used the k-means
method with the help of Classification Learner
tool in MATLAB®, which carries out the daily
solar irradiance pattern grouping into K exclusive
clusters (groups).

normalized  solar
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Normalized irradiance

5 10 15
Point number in the normalized time interval points

a) Normalized solar irradiance patterns

Sorted normalized irradiance

5 10 15
Point number in the normalized time interval points

b) Sorted normalized solar irradiance patterns

Fia.3. Solar irradiance patterns

For the choice of the number of clusters, it is
possible to consider the results of a parametric
analysis by changing K, or to set up the number K
according with a practical criterion. In the
example shown in [10] for K = 12, the clustering
results are fine, but it is not immediate to give a
practical meaning to all the clusters on the basis
of the results; for example, two clusters contain
solutions close to the clear sky conditions, and the
differences among the clusters are progressively
lower. Conversely, with a smaller number of
clusters it is easier to identify the type of days
from practical considerations. In this paper, the
chosen number of clusters is K = 4, with a
practical meaning of having a simple
categorization of the days into clear, mostly clear,
mostly cloudy, and cloudy.

Cluster 2

Cluster 1
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Normalized irradiance
o
[¢)]
Normalized irradiance
o
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10 20
Point number

o

10 20
Point number

The results of the k-means clustering with K =
4 are shown in Fig. 4 for NP, Fig. 5 for SNP, and
Fig. 6 for DNP. These results confirm the
partitioning of the days into clear (cluster 1),
mostly clear (cluster 2), mostly cloudy (cluster 3),
and cloudy (cluster 4). The effectiveness of the
choice K = 4 has been checked by repeating the k-
means clustering with different number of clusters
and tracking two clustering performance
indicators, namely, the sum of the Euclidean
distances between centroids for each cluster (the
lower, the better), and the silhouette values (the
higher, the better). Fig. 7 shows the results. The
performance indicators for the practical solution
chosen are relatively good, and are acceptable
with respect to the higher difficulty of
interpretation that would occur with higher
numbers of clusters.

Cluster 3 Cluster 4

Normalized irradiance
Normalized irradiance

0 10 20
Point number

0 10 20
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Fig.4. Clustering results based on normalized irradiance patterns
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Fig.5. Clustering results based on the sorted normalized irradiance and corresponding normalized
irradiance patterns

98



Momalized irradiance  Momalized irmdiance  Momralized irmdiance

Cluster 1

0 10 20
Pgint number

0 10 20
Pgint number

PROBLEMELE ENERGETICII REGIONALE N (NN) AAAA

0 10 20
Pgint number

Momalized iradiance  Womralized irmdiance  Nomralized irmdiance

Cluster 2

0 10 20
Point number

[} ) 20
Pgint number

0 10 20
Paint number

Cluster 3 Cluster 4
1
0.5 0.5
0 — o=
0 10 0 10 20

) 20
Paoint number

Point number

1

0.5

0
[} i 20 0 10 20
Paint number Paint number

Momalized iradiance Momralized irradiance  Nomralized irmdiance

Momalized irmadiance  Nomalized irmadiance  Momralized irmdiance

[} 10 20
Point number Point number

Fig.6. Clustering results based on the differences of the sorted normalized irradiance patterns and
sorted and normalized irradiance patterns

Table 2
Succession of day type after knowing the type of
preceding day

Preceding day

Type
Day > > > >
of & = &S| = © ° 5_3
Clear | 22 | 16 | 7 | 10 | 55
Mostly |\ 15 | 46 | 16 | 15 | 89
clear
NP Mostl
Yl 11 | 11 | 16 | 37 | 75
cloudy
Cloudy | 10 | 16 | 36 | 84 | 146
Clear | 17 | 18 | 9 | 7 | =1
'\ﬂfesat:y 14 | 37 | 2 | 14| 87
SNP Mostl
Y1 16 | 19 | 22 | 36 | 93
cloudy
Cloudy 4 13 40 77 134
Clear 20 21 11 7 59
Mostly | 1, | 33 | 19 | 15 | 81
DNP clear
Mostly | 17 | 18 | 20 | 34 | 89
cloudy
Cloudy | 8 9 | 39 | 80 |136
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a) Silhouette values b) Sum of the Euclidean
distances between centroids
Fig. 7. Clustering performance for different
numbers of clusters K. Better performance occurs
for higher silhouette and lower sum of distances.

Table 3
The dissimilitude between three types of
clustering approaches

Dissimilitude between types of clustering

Da
A Bé SNP vs.
yp NP vs. SNP | NP vs. DNP DNP
Clear 4 | 11% | 4 [11% | 8 | 2.2%
Mostly | 5 | o500 | -8 | 220 | 6 | 16%
clear
Mostly | 15 | 4906 | 14 | 3.8% | -4 | 1.1%
cloudy

Cloudy | -12 | 33% | -10 | 27% | 2 | 0.5%
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Table 2 and Table 3 show the results and the
dissimilitude between clustering with the three
types of input data. It can be observed that the
differences are not significant, but after visual
assessment of solar irradiance pattern clusters, it
can be concluded that the SNP and DNP
approaches are more accurate.

information. Model 2 takes into account the two
preceding days, again without considering
seasonal information.
Table 4
Probability of finding a given day type after
knowing the type of the preceding day (for
Model 1)

In order to use the clustering results for solar Preceding day
irradiance forecasting, it was used the probability Type Day - . -
of the succession of days belonging to each cluster of & Zs | 85 =]

. . data | YPe 2 | 82| 83| 3
durlng_the year in dependence of the type of @) Ss° | 2 ©
preceding days (Table 4). In the columns there are
the types of preceding days, and in the rows the Clear 40% | 18% 9% 7%
following types of days and their probabilities of Mostly
occurrence. NP clear 22% 52% 21% 10%

Table 5 shows an example of probability of Mostly . . . .
succession type of day with known type of two cloudy | 20% | 12% | 21% | 25%
preceding days_ Cloudy 18% 18% 48% 58%

Clear 33% 21% 10% 5%
. Mostly
B. Data processing phase o clear | 27% | 43% | 24% | 10%

Data training consists of the simulation of a SNP NMostly
one-year day-by-day succession, with the scope cloudy 31% | 22% | 24% | 27%
of forecasting §o|ar |rr<'_;1d|anc¢ fe_atur_es for that Cloudy 8% | 15% | 43% | 57%
year. The baseline for simulation is given by the ; ; ; ;
probability of type of day successions, together '\SI::)Z‘:‘Iry 34% | 26% | 12% | 5%
with the average r_1u_mber of day_s of each clus_ter cloar 2a% | 41% | 219% | 11%
per year. Data training was carried out by using DNP Mostly

. ® A
the Igvallab![c_a Mat_lab ap;pllcatcljonb _ f cloudy 29% | 2206 | 2206 | 250
orecasting is performed by using four . . . .
models. Model 1 takes into account only one Cloudy | 14% | 11% | 44% ] 59%
preceding day, without considering seasonal
Table 5
Probability of finding a given day type after knowing the types of two preceding days (for Model 2)
1st preceding Clear Mostly | Mostly- Cloudy Clear Mostly | Mostly- Cloudy
day clear cloudy clear cloudy
2nd preceding Clear Clear Clear Clear Mostly Mostly Mostly Mostly
day clear clear clear clear
Clear 35.3% | 33.3% | 55.6% 0.0% | 357% | 189% | 22.7% 7.1%
Mostly clear 35.3% 27.8% 11.1% 28.6% 50.0% 43.2% 40.9% 35.7%
Mostly-cloudy 23.5% 22.2% 33.3% 71.4% 14.3% 27.0% 13.6% 28.6%
Cloudy 5.9% 16.7% 0.0% 0.0% 0.0% 10.8% 22.7% 28.6%
1st preceding Clear Mostly | Mostly- Cloudy Clear Mostly | Mostly- Cloudy
day clear cloudy clear cloudy
2nd preceding | Mostly- | Mostly- | Mostly- | Mostly-
day cloudy cloudy cloudy cloudy Clougly | Shuely | Cleuly | Slouy
Clear 12.5% |  21.1% 4.5% 5.6% 0.0% | 15.4% 5.0% 3.9%
Mostly clear 25.0% 31.6% 18.2% 22.2% 75.0% 7.7% 22.5% 1.3%
Mostly-cloudy 25.0% 21.1% 27.3% 22.2% 0.0% 53.8% 20.0% 27.3%
Cloudy 37.5% 26.3% 50.0% 50.0% 25.0% 23.1% 52.5% 67.5%

100
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Table 6
Probability of finding a given day type after
knowing the type of one preceding day
(for Model 3)

Table 7
Probability of finding a given day type after
knowing the type of one preceding day
(for Model 4)

Preceding day
Day type 5 = 5 £8 g
o | 25|88 3
Cold time period
Clear 12.5%| 20.0%| 4.8%| 4.2%
Mostly clear 0.0%| 0.0%| 9.5%| 2.1%
Mostly cloudy | 75.0%| 20.0%| 28.6%| 22.9%
Cloudy 12.5%| 60.0%| 57.1%| 70.8%
Warm time period
Clear 38.6%| 19.8%| 13.7%| 7.9%
Mostly clear 31.8%| 45.7%| 35.3%| 31.6%
Mostly cloudy | 22.7%| 22.2%| 19.6%| 36.8%
Cloudy 6.8%| 12.3%| 31.4%| 23.7%

Model 3 takes into account one preceding day
and the probabilities are divided into two time
periods (i.e., the cold period from November 1% to
March 31%, and the warm period for the rest of the
year). Finally, Model 4 takes into account one
preceding day and the probabilities are divided
into the four seasons. Another model could take
into account two preceding days and the
probabilities divided into the four seasons.
However, the forecasting with this model would
be quite problematic, due the fact that it would
require two or four matrices with probabilities for
each seasons with 64 cells each, and most of them
with null values, leading to a rather impractical
modeling. For this reason, this forecasting model
was not applied.

In models 1, 3 and 4, at the initial stage of
modeling one day preceding the “forecast year” is
extracted. Depending on the type of this day and
of the probability of the following type of day, it
is determined the type of the next day. Then, the
types of the next days are determined in the same
manner, with remark that the type of preceding
day is taken as the type of the following day
determined at the previous stage (it was not
necessary to introduce manually the type of
preceding day). This process continues until the
simulation of all the days of the year.

Forecasting with two preceding days
distinguishes from the previous variants of
forecasting by taking into account the type of the
two preceding days (not only one preceding day).
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Preceding day
o =° | =c O
Winter
Clear 0.0% | 20.0% | 0.0% | 3.8%
Mostly clear 0.0% | 0.0% | 10.0% | 2.5%
Mostly cloudy | 75.0% | 20.0% | 30.0% | 22.5%
Cloudy 25.0% | 60.0% | 60.0% | 71.3%
Spring
Clear 33.3% | 27.3% | 5.0% | 9.5%
Mostly clear 22.2% | 18.2% | 20.0% | 14.3%
Mostly cloudy | 33.3% | 18.2% | 25.0% | 47.6%
Cloudy 11.1% | 36.4% | 50.0% | 28.6%
Summer
Clear 46.2% | 17.5% | 16.7% | 0.0%
Mostly clear 30.8% | 52.6% | 43.3% | 60.0%
Mostly cloudy | 15.4% | 24.6% | 23.3% | 40.0%
Cloudy 77% | 53% | 16.7% | 0.0%
Autumn
Clear 16.7% | 28.6% | 23.1% | 9.1%
Mostly clear 33.3% | 35.7% | 15.4% | 13.6%
Mostly cloudy | 50.0% | 14.3% | 7.7% | 18.2%
Cloudy 0.0% | 21.4% | 53.8% | 59.1%

At the first stage, the types of these days are
taken in accordance with the types of two days
preceding the period of interest (Table 5). In the
next stages, the types of preceding days are taken
as the types of following days in the previous
stage.

In Model 3 and Model 4 the probabilities of
following a given type of day after the certain type
of preceding day were extracted from Table 6 and
Table 7, respectively, in accordance with the
particularities of each season.

C. Validation phase

This phase includes de-normalization of the
solar irradiance resulted from the forecasting
process, calculation of the actual solar irradiance,
and validation of forecasting.

De-normalization represents the opposite
process of normalization, i.e., representation of
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forecasting solar irradiance and time in natural
units kW/m? and, respectively, hours. For
obtaining the actual solar irradiance, the result of
forecasting (in relative units) is multiplied by
solar irradiance in Clear-sky conditions for the
respective period of time [9,13].

In order to validate the forecasting results, the
confusion matrix is constructed, and common
errors used for accuracy assessment of forecasting
(root mean square error, average of the errors,
mean absolute error and mean absolute
percentage error) are calculated.

Confusion Matrix

The Confusion matrix is a summary of
prediction results and shows the ways in which
the classification model performs in predictions.

The number of correct and incorrect
predictions are summarized with counting values
and broken down by each cluster. It shows not
only the errors, but more importantly the types of
errors made. The columns represent the predicted
types of days, and the rows the actual types of
days.

With the view of accuracy calculation for each
predicted cluster, the data from the confusion
matrix (Table 9) are classified as:

True Positives (TP): placed in the top left cell,
represents the data rows (type of day)
belonging to the positive class (i.e., clear) and
correctly classified as such;

False Negatives (FN): placed in the first row at
the right side of the TP cell, represents the data
rows (type of day) belonging to the positive
class (i.e., clear) and incorrectly classified as
negative (i.e., mostly clear, mostly cloudy or
cloudy);

False Positives (FP): placed in the first column
below the TP cell, represents the data rows
(type of day) belonging to the negative class
(i.e., mostly clear, mostly cloudy or cloudy)
and incorrectly classified as positive (i.e.,
clear);

True Negatives (TN): placed in rows 2 — 4 and
columns 2 — 4, represents the data rows (type
of day) belonging to the negative class (i.e.,
mostly clear, mostly cloudy or cloudy) and
correctly classified as such.

Overall statistics summarize the accuracy of
the forecasting model, represented by Overall
Accuracy and the Overall Error. The Overall
Accuracy of forecasting model is determined as
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the ratio of true predicted type of days to total
number of days:

TP+TN

Accuracy = —
y TP+FP+FN+TN

ey

The Overall error is determined as the ratio
between the false predicted type of days and the
total number of days:

(FP+FN)

Error = ——————
(TP+FP+FN+TN)

(2)

The class statistics summarizes the class
performance for the positive class and the
negative class, separately.

Sensitivity shows the capability of the model to
detect positive classes. So if Cluster 1 is a positive
class, the Sensitivity quantifies how many actual
clear days are predicted correctly as clear. The
Sensitivity is evaluated as:

Sensitivity = TP/(TP + FN) 3

Specificity shows the accuracy of assignment
to the positive class:

Specificity =TN /(TN + FP) 4)

Recall shows the ratio of the total number of
days correctly classified as positive:

Recall =TP/(TP + FN) 5

Precision shows the capability of the model to
assign positive events to the positive class:

Precision = TP /(TP + FP) (6)

Recall and Precision are interconnected. If a
stricter filter is used, it is increased the number of
days reported correctly as Clear days, but at the
same time is increased the number of days of other
types reported incorrectly as Clear days. And vice
versa, a less strict filter leads to increasing the
number of Clear days reported incorrectly as days
of other types. Often it is used the F-measure,
which is the harmonic mean of Recall and
Precision:

Recall+Precision
F —measure =2 —————  (7)
Recall+Precision

Errors calculation

For quantitative estimation of forecasting,
statistical methods are used. The estimation error
¢ is defined as the difference between the forecast
irradiance I, and actual irradiance I,

®

The positive value of ¢ appears when the solar
irradiance is overestimated, and vice versa, the
negative value appears when the forecasting solar
irradiance is underestimated.

&€= Ifor — Ioct
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Sample day

Fig. 8. Sample results of forecasting of solar irradiance

Table 8
Sample results of forecasting of the types of days
Forecast

Day Actual Model 1 Model 2 Model 3 Model 4
02/11/2017 | Mostly cloudy Cloudy Cloudy Cloudy Cloudy
03/11/2017 Cloudy Cloudy Cloudy Cloudy Cloudy
04/11/2017 Cloudy Cloudy Cloudy Cloudy Mostly cloudy
05/11/2017 | Mostly cloudy Cloudy Cloudy Cloudy Clear
06/11/2017 Cloudy Mostly cloudy Mostly cloudy Cloudy Mostly cloudy
07/11/2017 Cloudy Mostly clear Cloudy Mostly cloudy Clear
08/11/2017 Cloudy Mostly cloudy Mostly clear Mostly cloudy Mostly clear
09/11/2017 Cloudy Mostly clear Mostly cloudy Mostly clear Clear
10/11/2017 Cloudy Mostly cloudy Mostly clear Cloudy Mostly cloudy
11/11/2017 | Mostly cloudy Cloudy Mostly clear Cloudy Cloudy
12/11/2017 | Mostly cloudy Cloudy Mostly cloudy Cloudy Cloudy
01/02/2018 Clear Mostly clear Cloudy Cloudy Clear
02/02/2018 | Mostly cloudy Clear Cloudy Cloudy Cloudy
03/02/2018 Cloudy Mostly cloudy Clear Mostly cloudy Cloudy
04/02/2018 Cloudy Cloudy Mostly clear Mostly cloudy Mostly cloudy
05/02/2018 Cloudy Cloudy Clear Mostly clear Cloudy
06/02/2018 Cloudy Cloudy Mostly cloudy Cloudy Cloudy
07/02/2018 Cloudy Cloudy Cloudy Cloudy Mostly cloudy
08/02/2018 Cloudy Mostly clear Cloudy Cloudy Cloudy
09/02/2018 Cloudy Mostly clear Cloudy Cloudy Clear
10/02/2018 | Mostly cloudy Clear Cloudy Cloudy Cloudy
01/06/2018 Mostly clear Cloudy Mostly cloudy Mostly clear Mostly clear
02/06/2018 Mostly clear Cloudy Cloudy Mostly clear Mostly clear
03/06/2018 Clear Mostly cloudy Cloudy Mostly clear Mostly clear
04/06/2018 Mostly clear Mostly clear Cloudy Mostly cloudy Mostly clear
05/06/2018 Clear Mostly cloudy Cloudy Mostly clear Mostly cloudy
06/06/2018 Clear Mostly clear Mostly cloudy Mostly cloudy Mostly clear
07/06/2018 Clear Mostly cloudy Cloudy Cloudy Mostly cloudy
08/06/2018 Clear Cloudy Mostly cloudy Mostly cloudy Mostly clear
09/06/2018 Cloudy Cloudy Mostly cloudy Mostly clear Mostly cloudy
10/06/2018 Cloudy Cloudy Cloudy Mostly clear Mostly cloudy
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The most common indices presented in the
literature are [1,2,13,24-26]:
e The root mean square error (RMSE), the most
popular error used for forecasting accuracy
assessment, calculated as:

RMSE = \[1/NYV &2 (9)

e The average of the errors (MBE), defined as
the mean difference between forecast and
actual irradiance, represents the systematic
part of the error:

MBE=¢=1/NYY,& (10)

e The mean absolute error (MAE), more
sensitive to high-value errors, is useful in those
applications insensitive to minor errors, is
defined as the absolute mean difference
between forecast and actual irradiance, and
represents the systematic part of the error:

randomly, and three different periods of the year
(autumn, winter and spring) are presented.

For accuracy assessment of the day type
prediction, the confusion matrix shown in Table 9
presents the results of comparing the forecast and
actual succession of days.

The overall performance of forecasting model
and class prediction statistics is presented in Table
10 and Table 11. The overall statistics of the
forecasting models shows that Model 4, which
takes into account seasonality aspects of solar
irradiance, is the most exact.

At the same time, Model 2, which neglects
these aspects, is the most inexact model. Thus, for
better results it is necessary to take into account
probabilities determined per seasons, but taking
two preceding days for forecasting was practically
ineffective.

MAE =1/NY¥ 11 Table 9
= 1/N Xizla] an Confusion Matrix for Clear class (Model 4)
e The mean absolute percentage error (MAPE), Forecast
which assesses uniform prediction errors: Mostly | Mostly
Clear clear cloudy | Cloudy
— N -
= '\f:fes;y 22 (FN) | 51(TN) | 17 (TN) | 7 (TN)
>
. RESULTS AND DISCUSSIONS g 2’.'83&'3 0EN) | 9Ny | 9(TN) | 31(TN)
A. Results and performance assessment of the
prediction of the day types Cloudy | 23(FN) | 25(TN) | 13 (TN) | 84 (TN)
The proposed forecasting model has been used
for forecasting GHI for the period 02 Novemb Table 10
or forecasting or the perio ovember Overall statistics per forecasting models
2017 — 01 November 2018 for the Chisinau Correctly | Incorrectly
Municipality, Republic of Moldova. The actual Model | Accuracy | Error Classified | Classified
type of day and the solar irradiance value that 1 0312 | 0.688 114 251
presents real solar features has been compared
with the forecast type of day and solar irradiance. 2 0238 | 0.762 87 218
An example of this comparison is presented in 3 0.362 | 0.638 132 233
Table 8 and Fig. 8. The sample has been chosen 4 0.444 | 0.556 162 203
Table 11
Class statistics (Model 4)

Type of day TP FP TN FN | Recall | Precision | Sensitivity | Specificity | F-measure
Clear 18 | 46 | 246 | 55 | 0.247 0.281 0.247 0.842 0.263
Mostly clear 51 46 214 54 0.486 0.526 0.486 0.823 0.505
Mostly cloudy 9 50 263 43 0.173 0.153 0.173 0.840 0.162
Cloudy 84 61 169 51 0.622 0.579 0.622 0.735 0.600
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Fig. 10. Error indices per sample days.
The performance of the forecasting model is Table 12
guantifying by calculation of error samples for the Error indices per year
days and for the entire year. The results of the Model RMSE MBE MAE MAPE
error calculations are presented in Table 12, Fig. kW/m? | kW/m? | kW/m? %
10 and Fig. 11. Error analysis demonstrates that 1 0.154 -0.034 0.098 39.8
takir]gI iptofaccourl[t_ of the seasorll\zjllito)ll Iasgectsd iZ 2 0.157 20,027 0.103 21
crucial for forecasting accuracy. Models 3 an
show lower level of error indices. Overall Model 3 0.131 0.017 0.083 33.6
4 has lower MBE than Model 3. 4 0131 | -0.001 0.082 33.3
RMSE MBE MAE MAPE
0.1
NE
=0.05 0.2
0
1 2 3 4 12 3 4 1 2 3 4 1. 2 3 4

Forecasting model

Forecasting model

Forecasting model

Forecasting model

Fig. 11. Error indices per year.
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B. Discussion and applications to scenario
generation

The results of the comparisons carried out
among the four variants indicate that the best
performance is obtained by using Model 4, which
takes into account seasonality aspects of the solar
irradiance. The calculations of the classical errors
such as MAPE show relatively high values of the
errors. However, it has to be considered that these
errors are obtained by trying to identify the type
of day in a long-term forecasting context. Trying
to guess the type of day that will occur in a long-
term time horizon is not the appropriate way to
proceed, as the uncertainty concerning the future
is so high that it is virtually impossible to identify
the day type for a single day.

The MAPE error itself is a limited metric to
address this kind of problem. Better metrics
should be found, based on the aggregate behavior
of the days in a given period. Indeed, the
comparison presented above had only the goal to
compare the four models, and to identify Model 4
as the most suitable one. Model 4 is now used to

Autumn Clear Autumn Mostly clear

create a mechanism of scenario generation. In
each scenario, the day types for an entire year are
generated by using the information available.
Since the process of scenario generation depends
on random number extractions, it is possible to
construct a large set of scenarios that can be then
used for different types of applications in which
the definition of multiple scenarios is useful to
make a probabilistic characterization of the
operation of a PV system.

An example of scenario generation has been
executed by constructing 100 scenarios starting
from different days of the year, considering the
partitioning into the four seasons. The type of day
has been chosen randomly with the probability
given by the relative occurrence of the types of
day in the corresponding season. Fig. 12 shows
the results, in the form of the Cumulative
Distribution Function (CDF) of the number of
days. The number of days found in the 100
scenarios for the day types in the four seasons are
included in relatively wide ranges. This confirms

Spring Clear Spring Mostly clear
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Fig. 12. CDF of the generation of 100 scenarios for one year. The red dots indicate a real situation.
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Fig. 13. Comparison between Actual type of day and three different modeled scenarios.

the possibility to generate various scenarios with
different numbers of days, following the
variability that occurs in real conditions.

To confirm the validity of the ranges obtained,
a red dot is positioned on each figure to show the
number of days that occurred in a real case for one
year.

It can be seen that the real number of days var-
ies considerably, but it is included in the ranges.
In any case, the numbers of days are linked to-
gether by the fact that the sum of the days in a
given season is fixed. Thereby, if more days of a
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given type appear during one year, the number of
days of all the other types will be lower.

A further result concerning the generation of
the scenarios is presented in Fig. 13. The actual
types of day found in a real situation are super-
posed to the types of days found in three scenarios
arbitrarily taken from the 100 scenarios gener-
ated.

It can be seen that the distribution of the types
of days is consistent in the various cases, even
though the same day can be different in the vari-
ous scenarios. For example, during the Winter
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there are some clear days in all scenarios, at dif-
ferent locations, with a situation that resembles
the real case in which the clear days appear occa-
sionally.

Furthermore, there are groups of successive
days with similar characteristics in each scenario,
which represent what may happen in reality, with
a sequence of corresponding days that does not
appear regularly every year in the same period.
These results confirm the practical usefulness of
the proposed way to generate the day type scenar-
ios.

CONCLUSIONS

In recent years the diffusion of solar PV
systems grew up considerably. However, solar
irradiance has intermittent nature, so that for
efficient planning of existing capacities and new
capacity to be installed it is extremely important
to carry out long-term forecasting with acceptable
accuracy. This paper has developed four variants
of a forecasting model using clustering method
and standard statistical instruments. These models
have been compared, showing that for better
accuracy it is recommended to use seasonality
aspects of the solar irradiance. The most suitable
model has then been used to generate a number of
scenarios that represent the possible variability of
the type of day during one year. These scenarios
are useful to carry out any probabilistic analysis
in which it is important to incorporate the
variability of the type of day during the year.

Further research will aim at enhance the
accuracy of the presented model by testing its
capabilities in multiple sites with different
meteorological conditions.
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