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Electromagnetic field calculation for 110 kV power line 

Berzan V., Patsyuk V., Ribacova G., Ermuratschii V. 

Institute of Power Engineering of the Academy of Sciences of Moldova 

Chisinau, Republic of Moldova 

 
Abstract. The paper studies the evolution of values for the characteristic electric field and magnetic 

field generated by power line voltages and currents voltage 110 kV their value based snapshots. These 

evolutions we examined in changing the value of the angle of the voltage vector and current vector 

within 0 00 180 .   The conductors are placed horizontally and triangle tops with different lengths of 

the sides. The electric field distribution was calculated with finite volume method. Since the electric 

field distributions were determined parameter values of LEA110 kV. The values of the line 

parameters, which were determined by the finite volume method, difference from the values calculated 

by the traditional method. In this context finite volume method presents attractive enough to determine 

the parameters of power lines and spatial distribution of the electric field in three-phase lines. 

Keywords: electric field, method of finite volumes, electric line parameters. 
 

Calculul câmpului electromagneric pentru linia 110 kV 

Berzan V., Patsyuk V., Ribacova G., Ermuratschii V. 

Institutul de Energetică al Academiei de Stiinţe a Moldovei 

Chisinau, Republica Moldova 

Rezumat. În lucrare se studiază evoluția valorilor mărimilor ce caracterizează câmpul electric și câmpul 

magnetic generat de tensiunile și curenții liniei electrice cu tensiunea de 110 kV în funcție valoarea lor 

instantanee. Aceste evoluții sunt examinate în funcție de schimbarea valorii unghiului decalajului de fază dintre 

vectorii tensiunii și curentului în conductoarele liniei trifazate în limitele  0 00 180  . Conductoarele sunt 

amplasate în plan orizontal și în vârfurile triunghiului cu lungimi diferite ale laturilor. Repartiția câmpului 

electric s-a calculat cu metoda volumelor finite.. Din repartițiile câmpului electric s-au determinat valorile 

parametrilor lineică ale LEA 110kV. Valorile numerice ale parametrilor liniei, care au fost determinate cu 

metoda volumelor finite diferă de valorile calculate cu metodele tradiționale. În acest context metoda volumelor 

finite se prezintă destul de atractivă pentru determinarea parametrilor liniilor electrice și repartiției șpațiale ale 

câmpului electric în liniile cu trei faze. 

Cuvinte-cheie: câmp electric, metoda volumelor finite, parametrii liniei electrice. 
 

 

Расчет электромагнитного поля линии электропередачи 110 кВ 

Берзан В., Пацюк В.,Рыбакова Г., Ермуратский В. 

Институт энергетики Академии наук Молдовы 

Кишинев, Республика Молдова 

Аннотация. В работе представлены результаты расчета распределения электрического поля воздушной 

линии ВЛ 110кВ, для случая изменения мгновенных значений напряжений и токов в проводах. При этом 

рассматривается случай изменения угла сдвига фазы между векторами напряжения и тока в пределах 
0 00 180 .   Проводники размещаются горизонтально и в треугольник. Распределение электрического 

поля рассчитывается методом конечных объемов. По распределению электрического поля были 

определены значения параметров линии LEA110 кВ. Численные значения параметров линии, которые 

были определены методом конечных объемов, отличается от значений, рассчитанных по традиционному 

методу. В этом контексте, метод конечных объемов представляет достаточно привлекательным, чтобы 

определить параметры линий электропередач и пространственное распределение электрического поля в 

трехфазной линии. 

Ключевые слова: электрическое поле, метод конечных объемов, параметры электрической линии. 

 

 

I. INTRODUCTION 

Power lines 110 kV are of major significance 

both for the electricity transmission system and 

for distribution of electricity to consumers. The 

lines have different constructive implementations 

concerning the location of the phase conductors 

in space. Thus, it is expected that the phase 

parameters will be different, including the 

electromagnetic field distribution in the 

transverse and longitudinal sections of the line. In 

most cases, it is considered that the phase 
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parameters are equivalent, and the lines as the 

power system objects are represented as 

monofilament lines. In these cases, it is usually 

operated in calculations with effective values or 

with the amplitude values of voltage and current. 

In reality, both the phase voltages and the 

currents are values that are changing in time with 

industrial frequency. During such period, both the 

voltage and the current are changing from plus to 

minus of the values of the actual amplitudes. 

Since the phase voltages and currents in three-

phase systems have the phase lag equal to 2π/3 

and phase conductors are spatially distributed, it 

is naturally to expect that such structures have the 

electric and magnetic fields of rotation. So the 

evolution in time of the maximum values of the 

electric and magnetic field strength in the 

transverse section of the line must be expected. 

Fig. 1 represents two conventional solutions 

for achieving 110 kV overhead transmission line 

with one circuit. We denote by 1 – phase А; 2 – 

phase В; 3 – phase С, then we have for the 

instantaneous values of voltages and currents the 

following relations: 

;sin tUu mA   ;
3

2
sin 







 
 tUu mB  

;
3

2
sin 







 
 tUu mC  

 ;sin AmA tIi   ;
3

2
sin 











 BmB tIi  

;
3

2
sin 











 CmC tIi  

CBA  . 

 

 

 
Fig. 1. Variants of spatial location of phase conductors in 110 kV overhead line 

 

 

We consider the power line with conductors 

of type AC240/39 with external diameter 21.6 

mm. The section of the conductor is equal to 

274.6 mm2, including the aluminum and steel 

components Al/Fe = 236/38.6 mm2. The value of 

the intensity of the effective current in phase is 

1.1j   A/mm2. In these conditions the maximum 

effective value of the current in phase 

1.1 x 274.6=302 A;I jS  and the phase power 

100/1.73 19 MW.S UI    

The task is to calculate the electromagnetic 

field and the linear parameters (linear capacitance 

and linear inductance) of the phases, taking into 

account the fact that the potential of the phase 

conductors are determined by the system of 

equations for phase voltages that have the angles 

lags and are variable in time. At the first stage we 

consider that the phase lag between the voltages 

and currents is zero ( 0  ). As the independent 

variable we choose the time t which will change 

with discrete step t  within the interval 

0 20t   ms. The potential of conductors should 

be determined by the instantaneous values of the 

phase voltages ( ),  ( ),  ( )A B Cu t u t u t , based on the 

current values of the independent variable t. The 

amplitudes values of phase voltages and currents 

are the following 89.65mU   kV and 425.8mI   

A; the angular frequency is 

2 2 50 314.f       rad/s. The calculation is 

performed for the stationary regime, but for 

different ratios of the instantaneous values of 

voltage phases in accordance with the 

discretization step 31 10t     s or 32 10t     s. 

We will also calculate the linear inductance of the 
phase conductors for selected time intervals. 

The second step will estimate the influence of 

varying of the phase lag between the phase 

voltages and the currents that can change within 

the range 0    . 

Let consider the problem of determination of 

two-dimensional potential distribution ( , )u x y  of 

electrostatic field in the multiply-connected 

domain ( ,0 )x x yL x L y L        with 
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piecewise constant permittivity ( , )a x y . This 

formulation is a particular case of the three-

dimensional problem for an infinite (along the z 

axis) cylinder with a cross section Ω. Within the 

Ω, the function ( , )u x y  satisfies Poisson equation  

 

div( grad ) ( , ),a u x y    

 

where ( , )x y  is the density of free charge 

distribution. If within Ω there are no any of such 

charges, then the equation turns into Laplace 

equation div( grad ) 0a u  . The values of ( , )u x y  

on the boundary     of the Ω are known  

 

),(),( yxyxu 
 . 

 

The electric field intensity E  is defined by the 

formula gradE u   and the electric displacement 

field – by the formula aD E . On the boundary 

interfaces between the heterogeneous media the 

continuity conditions [ ] 0u   and [( , )] 0D n   

hold. Here the square brackets denote the 

difference between the limit values at the left and 

at the right of the boundary interface and n  is the 

normal vector to this interface. 

The investigation will be performed by means 
of the finite volume method [1]. 

 

II. FINITE VOLUME METHOD 

 

For the numerical solution of the Dirichlet 

problem for the Poisson equation, we divide the 

domain   into a finite set of small 

triangles. All their vertices form a discrete set of 

grid points, which is superimposed on a 

continuum  . The grid is constructed in such a 

way that the sides of the triangles coincide with 

the interface of heterogeneous media. Let denote 

by Th the set of triangles, where h is the maximal 

value of the triangles side lengths. Let introduce 

also the dual grid *

hT  that consists of so-called 

Voronoi cells (see fig. 2, a). Let denote by 
0P  the 

basic node and by 
0

*

PK  – the Voronoi cell. The 

vertices of Voronoi cell 
0

*

PK  we denote by Qi. 

These vertices Qi are the centers of the circles 

circumscribed around the triangles having the 

point 
0P  as a vertex.  

As an approximate solution of the Dirichlet 

problem we consider the piecewise linear 

function ( , )hu x y  that must be continuous in   

and linear on every triangle 
hK T . The function 

( , )hu x y  on the set of triangles 
hT  can be defined 

in the following manner. 
 

  
 

Fig. 2. The neighborhood of the grid node P0 and 

Voronoi cell 
*

0PK  (a), the triangle i j kPP P  (b). 

 

Let the triangle i j kK PP P   (fig. 2,b) be some 

element of the set 
hT  and ( , )P x y  be an arbitrary 

point of this element. In this triangle for each 

vertex we introduce the shape functions 

( , ),  ( , )i jN x y N x y  and ( , )kN x y . These functions 

should verify the following conditions: the 

functions are linear and their values at the 

triangle vertices are equal to 0 or 1, i.e.: 

 

0)()(;1)(  kijiii PNPNPN ; 

0)()(;1)(  kjijjj PNPNPN ; 

0)()(;1)(  jkikkk PNPNPN . 

 

The shape functions can be represented in the 

explicit form through the coordinates of the 

vertices 
 

1
( , ) ( ),

2
i i i iN x y a b x c y

A
    

, , ;i j k k j i j k i k ja x y x y b y y c x x       

1
( , ) ( ),

2
j j j jN x y a b x c y

A
    

, ,j k i i k j k i j i ka x y x y b y y c x x      ; 

1
( , ) ( ),

2
k k k kN x y a b x c y

A
    

, ,k i j j i k i j k j ia x y x y b y y c x x      . 

Here A is the area of the triangle 

 

kk

jj

ii

yx

yx

yx

A

1

1

1

2  . 
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Using the shape functions for every grid node 

(internal or boundary) we introduce the basis 

function ( , )i x y , i = 1, 2, …, n, n+1, …, n1 (n 

and n1 represent here the number of internal 

nodes and the total number of nodes 

respectively). The function ( , )i x y  is piecewise 

linear, i.e. it is continuous and linear on each 

triangle with unit value in the node P
i
 and with 

zero values in all other nodes. Then the 

approximate solution ( , )hu x y  can be represented 

as a linear combination of the basis functions 
 





1

1

),(),(
n

i

iih yxuyxu . 

 

Let integrate the Poisson equation 

div( grad ) ( , , )a u x y z    over the volume of the 

Voronoi cell 
0

*

PK . We obtain the following 

integral relation 
 

 





 *
0

*
0

),(

PKPK

a dSyxdl
n

u
.     (1) 

 

To obtain the system of equations for the 

approximate solution we proceed as follows. 

Let’s denote in the Voronoi cell 
0

*

PK  (see fig. 2,а) 

by , 0,6mP m   – the grid nodes; by , 1,6mQ m   – 

the vertices of 
0

*

PK  for the node 
0P , by 

mM , 

1,6m   – the intersection points of the segment 

0 mP P  and 1m mQ Q . Then the integral from (1) 

over the contour 
0

*

PK  can be approximated as 

follows (taking in consideration that 

7 1 7 1 7 1,  ,  )P P Q Q M M   : 

 

*
10

6

1
i iP

a a

i Q QK

u u
dl dl

n n
 




 
 

 
   

 














6

1

1

10

01
1

)()(
)(

i

ii

i

i
ia QQ

PP

PuPu
M

, 

 

where 0 1iP P  and 1i iQ Q   are the lengths of the 

segments 0 1iP P  and 1i iQ Q  . 

The integral from the right-hand member of 
(1) we approximate by formula: 

 

*

0

0 0( , ) ( ) ,

PK

x y dS P S   

 

where S0 is the area of the Voronoi cell 
0

*

PK . 

Then the approximation of the equation (1) can 

be represented in the following form 

 

00

6

1

1

10

01
1 )(

)()(
)( SPQQ

PP

PuPu
M

i

ii

i

i
ia 













. 

 

So the final equation for the grid node 
0P  

takes the form 
 

6

0 0 1 0 0

1

( ) ( ) ( )i i

i

u P u P P S  



   ; (2) 

6
1

1 0

10 1

( ) , 1,6;
i i

i a i i

ii

Q Q
M i

P P
   







     

(
1 7 1 7 1 7,  ,  P P M M Q Q   ). 

Now we can write out the equation of type (2) 

for each internal grid node and we use the known 

conditions for the boundary nodes. As a result, 

we obtain the system of linear algebraic equations 

with symmetrical matrix. It is to mention that 

when solving the practically important problems 

the number of equations in such systems amounts 

to thousands or dozens of thousands. However, 

since each equation of the type (2) contains only 

some nonzero elements (usually there are from 3 

to 9 nonzeros) then it turns out that the final 

matrix is sufficiently sparse matrix. For inversion 

of such matrices (of the band type) the Gauss 

method or the square root method are commonly 
used. 

III. FLOW OF THE INTENSITY VECTOR  

 

The obtained solution ),( yxuh  for field 

potential distribution in   permits to construct 

the flow of the intensity vector 

uEEE yx grad),(  . Let denote by V the flow 

of vector E , passing through the unit area 

element that is parallel with axis z and on the 

surface of which the condition const),( yxu  is 

fulfilled. The functions u and V satisfy the 
Cauchy-Riemann equations 

 

x

V

y

u
E

y

V

x

u
E yx



















 ; , 
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then the level curves (isolines) const),( yxu  and 

const),( yxV  generate mutually orthogonal 

families. The function ),( yxV  can be obtained by 

calculation of the following contour integral 

 

 


















),(

),( 00

),(

yx

yx

dy
x

u
dx

y

u
yxV , 

 

where 00, yx  are the coordinates of an arbitrary 

fixed point from , and the patch of integration 

is situated inside of . In case of multiply-

connected domain the patch of integration also 

can not intersect the cuts of the domain that bring 

it to simply connected structure. 

IV. DETERMINATION OF LINEAR 

CAPACITANCE AND INDUCTANCE 

The capacitance C between two conducting 
bodies can be computed by the formula 

1 2

q
C

u u



, 

where )( 21 uu   potential difference of these 

bodies. The charge q of the body located inside 

of the some three-dimensional domain V can be 

computed in accordance with Gauss' law of flux 

as a surface integral of the field intensity vector 

E  over surface VS    

 

grad
S S

q E dS u dS         

(grad )
S S

u
u n dS dS

n
 


    

  . 

 

Here by S we denoted an arbitrary surface 

containing the charged body, by n  – the exterior 

normal vector to the surface S and by   – the 

permittivity. 

Linear inductances for the system of wires can 

be calculated according to formulas [2, §28.1]. In 

the case when the transverse wire sizes are very 

small in comparison with contours length and 

with the distance between them, the linear self-

inductance L and the mutual linear inductance 
M12 are calculated by the formulas: 

 
1 1

0 01 2

1 0 0
4 8

l l
dx dx

L
l r

 

 
   , 

1 2

0 1 2

12

1 0 0
4

l l
dx dx

M
l r




   . 

 

Here r is the distance between two points on 

the centerline of the conductors with elements dx1 

and dx2, 0 =410-7 is the magnetic constant, 

121  ll  m. For the mutual inductance, the 

elements dx1 and dx2 belong respectively to the 

conductors with the numbers 1 and 2, and for the 

self-inductance these elements are chosen on the 
same conductor. 
 

V. NUMERIC RESULTS 

The calculation domain (see fig. 1) represents 

the square ( ,0 )x x yL x L y L        with 

50xL  m, 100yL m, y = 0 is the earth's 

surface. We suppose the value of potential of the 

electric field tends to zero at the boundaries of the 
square. 

In order to optimize the number of nodes it is 

typically used the computational grid with 

variable dimensions of the cells. The density of 

cells in the computational grid is higher and 

increases when approaching the conductor.  

The examples of computational grids for 

different constructive variants of spatial location 

of phase conductors in 110 kV overhead line  are 

represented in fig. 3.1, fig. 3.2 (phase conductors 

are placed horizontally in a line) and fig. 4.1, fig. 

4.2 (phase conductors are placed at the vertices of 
a triangle). 

 
 

Fig. 3.1. Computational grid in the square Ω for 

three-conductor overhead line of 110 kV when 

phase conductors are placed horizontally in a line. 

General view. 
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Fig. 3.2. Computational grid in the vicinity of 

conductors when phase conductors are placed 

horizontally in a line. 

 

 
 

Fig. 4.1. Computational grid in the square Ω for 

three-conductor overhead line of 110 kV when 

phase conductors are placed at the vertices of a 

triangle. 

 

 

Fig. 4.2. Computational grid in the vicinity of 

conductors when phase conductors are placed at 

the vertices of a triangle. 

 

 
 

 
 

 

Fig. 5. Potential distribution (curves 1) and the flow 

of electric field intensity (curves 2). 

 

The step size of the grid in areas close to the 

boundaries of the square constitutes 8 m, and as 

we get closer to the conductor, the step size 

decreases to the conductor radius, i.e. to 0,0108 

m. Total number of computing nodes of the grid 

is equal to 5160, and the number of triangular 

elements is equal to 10164. Let note that to obtain 

one variant of the numerical solution we need 

about 200 minutes using 2GHz frequency 

processor. 

Figure 5 illustrates the distributions of the 

electric field in 110 kV lines for examined 

constructive variants. These results are obtained 

for the case when the phase voltages have the 
following values:  

 

UA =89.81 kV; UB = UC = – 44.91 kV. 

 

On the basis of the electromagnetic field 

distributions the matrices of electrostatic 

induction coefficients as well as the partial 

capacitances and inductances have been 

calculated. The matrices with values of linear 
parameter for 110 kV line are shown in Table 1. 

TABLE I.  MATRICES OF LINEAR PARAMETERS 

FOR DIFFERENT CONSTRUCTIVE VARIANTS OF 

110 KV LINE 

Parameters Location of phase 

conductors in parallel with 
the ground 

Location of 

phase 
conductors at the 

vertices of a 

triangle 

Electrostatic 
induction 

coefficients, 

pF/m  

























31.836.225.1

36.280.836.2

25.136.231.8
 

























7.8460.118.1

60.17.6733.1

18.133.17.73  
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Partial 

capacitances, 

pF/m  

















70.436.225.1

36.209.436.2

25.136.270.4

C
 



















06.560.118.1

60.174.433.1

18.133.122.5

C

 

Self and 

mutual 
inductances, 

H/m 



















54.151.038.0

51.054.151.0

38.051.054.1

L
 



















54.1377.030.0

37.059.133.0

30.033.054.1

L

 

 

VI. CONCLUSIONS 

By applying the finite volume method we 

have determined the electromagnetic field 

distribution of three-phase AC line, taking into 

account the temporal variation of the phase 

voltages determined by the frequency of the 

alternating current. We have determined the 

capacitance and inductance values of the three-

phase line for different suspension configurations 

of conductors. We have obtained the numerical 

values of the linear parameters showing the 

obvious differences depending on the 

constructive realization and differences in 

parameter values calculated by traditional 

methods and values determined on the basis of 

the proposed technique. Finite volume method is 

quite attractive and well suited when modeling 

electrostatic problems, especially the problems 

for which the flux is of importance. 
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