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Electromagnetic field calculation for 110 kV power line
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Institute of Power Engineering of the Academy of Sciences of Moldova
Chisinau, Republic of Moldova

Abstract. The paper studies the evolution of values for the characteristic electric field and magnetic
field generated by power line voltages and currents voltage 110 kV their value based shapshots. These
evolutions we examined in changing the value of the angle of the voltage vector and current vector
within 0° < ¢ <180°. The conductors are placed horizontally and triangle tops with different lengths of

the sides. The electric field distribution was calculated with finite volume method. Since the electric
field distributions were determined parameter values of LEA110 kV. The values of the line
parameters, which were determined by the finite volume method, difference from the values calculated
by the traditional method. In this context finite volume method presents attractive enough to determine
the parameters of power lines and spatial distribution of the electric field in three-phase lines.
Keywords: electric field, method of finite volumes, electric line parameters.

Calculul campului electromagneric pentru linia 110 kV
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Rezumat. in lucrare se studiazi evolutia valorilor marimilor ce caracterizeazd campul electric Si campul
magnetic generat de tensiunile si curentii liniei electrice cu tensiunea de 110 kV in functie valoarea lor
instantanee. Aceste evolutii sunt examinate in functie de schimbarea valorii unghiului decalajului de faza dintre
vectorii tensiunii si curentului in conductoarele liniei trifazate in limitele 0° <¢ <180°. Conductoarele sunt

amplasate in plan orizontal Si in varfurile triunghiului cu lungimi diferite ale laturilor. Repartitia campului
electric s-a calculat cu metoda volumelor finite.. Din repartitiile cAmpului electric s-au determinat valorile
parametrilor lineicd ale LEA 110kV. Valorile numerice ale parametrilor liniei, care au fost determinate cu
metoda volumelor finite diferd de valorile calculate cu metodele traditionale. in acest context metoda volumelor
finite se prezintd destul de atractiva pentru determinarea parametrilor liniilor electrice si repartitiei spatiale ale
campului electric 1n liniile cu trei faze.

Cuvinte-cheie: camp electric, metoda volumelor finite, parametrii liniei electrice.

Pac4er 3/1eKTPOMAarHUTHOTO MOJIsI JIMHUM dJ1eKTponepenayn 110 kB
Bep3an B., ITantok B.,Pridakosa I'., Epmypartckuii B.
WHucTUTyT 3HEpreTHKN AKageMuy HayK MOJI0BBI
Kummnes, Pecrry0nmnka Momnnosa

Annomayusn. B pabote npencTaBieHbl pe3yabTaThl pacueTa paclpeeeHus HIeKTPHIECKOTO OIS BO3LYITHOH
suaun BJI 110kB, i cnyyas ©3BMEHEHUs MTHOBEHHBIX 3HAUEHUI HanpsKeHUH U TOKOB B npoBojax. [Ipu stom
paccMmarpuBaeTcsl cilydaid W3MEHEHHs yria ciasura (asbl MEeKay BEKTOpaMH HANPSDKEHWS M TOKAa B Ipenenax
0° < <180°. TIpoBOMHMKH Pa3MEIIAIOTCS TOPU3OHTATLHO H B TPEYTOJILHHK. Pacnpesieienne SMeKTpuIecKoro
MO PacCUUTBHIBAETCS METOAOM KOHEUHbIX 00beMOB. Ilo pacmpeneneHHI0 3IEKTPUUECKOTO MO Oblau
omperneneHsl 3HaueHus napamerpoB JuHHM LEA110 xB. YncneHHble 3Ha4YeHHS NMapaMeTPOB JIMHHUHU, KOTOpHIE
OBLIH OTIpesieNIeHbl METOIOM KOHEUHBIX 00bEMOB, OTINYACTCS OT 3HAUEHHUH, PACCYUTAHHBIX 10 TPATUIIHOHHOMY
MeToay. B 3TOM KOHTEKCTe, METOJ] KOHEUHBIX 0OBEMOB NMPEICTABISAET JOCTATOYHO IPUBIEKATEIBHBIM, YTOOBI
OIIPEJIeIUTh apaMeTpbl JINHUHM 3JIEKTpoIepeiad U IPOCTPAHCTBEHHOE pacpeieNleHHe 3IEKTPUIECKOro Mmojs B
Tpex($azHOH JIMHUH.

Knrwouegvie cnosa: >nekTpuieckoe Nose, METo/l KOHEYHBIX 00bEMOB, apaMeTphl IEKTPUUECKOH JINHHH.

concerning the location of the phase conductors
. INTRODUCTION in space. Thus, it is expected that the phase

Power lines 110 kV are of major significance  parameters will be different, including the
both for the electricity transmission system and  electromagnetic ~ field distribution in the
for distribution of electricity to consumers. The  transverse and longitudinal sections of the line. In
lines have different constructive implementations ~ most cases, it is considered that the phase
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parameters are equivalent, and the lines as the
power system objects are represented as
monofilament lines. In these cases, it is usually
operated in calculations with effective values or
with the amplitude values of voltage and current.
In reality, both the phase voltages and the
currents are values that are changing in time with
industrial frequency. During such period, both the
voltage and the current are changing from plus to
minus of the values of the actual amplitudes.
Since the phase voltages and currents in three-
phase systems have the phase lag equal to 2m/3
and phase conductors are spatially distributed, it
is naturally to expect that such structures have the
electric and magnetic fields of rotation. So the
evolution in time of the maximum values of the
electric and magnetic field strength in the
transverse section of the line must be expected.

H=14900 mm; d12=d23=2100 mm
Diameter of conductor 21.6 mm

Fig. 1 represents two conventional solutions
for achieving 110 kV overhead transmission line
with one circuit. We denote by 1 — phase A; 2 —
phase B; 3 — phase C, then we have for the
instantaneous values of voltages and currents the
following relations:
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Fig. 1. Variants of spatial location of phase conductors in 110 kV overhead line

We consider the power line with conductors
of type AC240/39 with external diameter 21.6
mm. The section of the conductor is equal to
274.6 mm2, including the aluminum and steel
components Al/Fe = 236/38.6 mm2. The value of
the intensity of the effective current in phase is
j=1.1 A/mmZ, In these conditions the maximum

effective value of the current in phase
| = jS=1.1x2746=302A;and the phase power

S =Ul =100/1.73 ~19 MW.

The task is to calculate the electromagnetic
field and the linear parameters (linear capacitance
and linear inductance) of the phases, taking into
account the fact that the potential of the phase
conductors are determined by the system of
equations for phase voltages that have the angles
lags and are variable in time. At the first stage we
consider that the phase lag between the voltages
and currents is zero (¢ =0). As the independent
variable we choose the time t which will change
with discrete step At within the interval
0<t<20 ms. The potential of conductors should

be determined by the instantaneous values of the
phase voltages u,(t), ug(t), u.(t), based on the
current values of the independent variable t. The
amplitudes values of phase voltages and currents
are the following U, =89.65 kV and I =425.8

A; the angular frequency is
w=2xf =27-50=314. rad/s. The calculation is

performed for the stationary regime, but for
different ratios of the instantaneous values of
voltage phases in accordance with the
discretization step At=1-10° s or At=2.10" s.
We will also calculate the linear inductance of the
phase conductors for selected time intervals.

The second step will estimate the influence of
varying of the phase lag between the phase
voltages and the currents that can change within
therange 0<¢<r.

Let consider the problem of determination of
two-dimensional potential distribution u(x,y) of
electrostatic field in the multiply-connected
domain Q=(-L, <x<L,0<y<L) with
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piecewise constant permittivity &,(x,y). This
formulation is a particular case of the three-
dimensional problem for an infinite (along the z
axis) cylinder with a cross section Q. Within the
Q, the function u(x, y) satisfies Poisson equation

div(g,gradu) = —o (X, y),

where o(x,y) is the density of free charge
distribution. If within Q there are no any of such
charges, then the equation turns into Laplace
equation div(e,gradu)=0. The values of u(x,y)

on the boundary T =o6Q of the Q are known
u(x, y)|,. =mx,y)

The electric field intensity E is defined by the
formula E = —gradu and the electric displacement
field — by the formula D = ¢,E . On the boundary
interfaces between the heterogeneous media the
continuity conditions [u]=0 and [(D,M)]=0
hold. Here the square brackets denote the
difference between the limit values at the left and
at the right of the boundary interface and N is the
normal vector to this interface.

The investigation will be performed by means
of the finite volume method [1].

I1. FINITE VOLUME METHOD

For the numerical solution of the Dirichlet
problem for the Poisson equation, we divide the
domain Q=Q+T into a finite set of small
triangles. All their vertices form a discrete set of
grid points, which is superimposed on a
continuum Q. The grid is constructed in such a
way that the sides of the triangles coincide with
the interface of heterogeneous media. Let denote
by Tn the set of triangles, where h is the maximal
value of the triangles side lengths. Let introduce
also the dual grid T, that consists of so-called

Voronoi cells (see fig. 2, a). Let denote by P, the
basic node and by K; - the Voronoi cell. The
vertices of Voronoi cell K; we denote by Qi

These vertices Q; are the centers of the circles
circumscribed around the triangles having the
point P, as a vertex.

As an approximate solution of the Dirichlet
problem we consider the piecewise linear

function u,(x,y) that must be continuous in Q
and linear on every triangle K €T, . The function
u,(x,y) on the set of triangles T, can be defined
in the following manner.

P (x;, ) b)

PA (-\‘p )'/.)

P(x;, 3;)

Fig. 2. The neighborhood of the grid node Po and
Voronoi cell K, (a), the triangle APP;R, (b).

Let the triangle K =ARP,R (fig. 2,b) be some
element of the set T, and P(x,y) be an arbitrary

point of this element. In this triangle for each
vertex we introduce the shape functions
N;(x,y), N;(x,y) andN,(x,y). These functions

should verify the following conditions: the
functions are linear and their values at the
triangle vertices are equal toO or 1, i.e.

N;(R)=L N;(P,)=N;(R)=0;
Nj(Pj)zl; Nj(Pi):Nj(Pk):O;
Nk(Pk):l; Nk(Pi) = Nk(Pj) =0.

The shape functions can be represented in the
explicit form through the coordinates of the
vertices

1
N, (x,y) =—(a +bx+cy),
(0 y) =2 (@ +bx+cy)
a'l:ijk_xkyqu:yj_yk,clzxk_xj,
1
Nj(X,y)=ﬂ(aj+bjx+cjy),
QG =XYi =X Y 0y =Y =Y G =X =X
1
Nk(X,y)=ﬁ(ak+bkx+cky),

a =XY; —xjyi,bk =Y =Y G =X X%
Here A is the area of the triangle

1% v
2A=1 Xx; ;
1 % Y
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Using the shape functions for every grid node
(internal or boundary) we introduce the basis
function 4(x,y),i=1,2, ...,n,ntl, ..., n1 (n
and n; represent here the number of internal
nodes and the total number of nodes
respectively). The function ¢ (x,y) is piecewise

linear, i.e. it is continuous and linear on each
triangle with unit value in the node Pi and with
zero values in all other nodes. Then the
approximate solution u, (x,y) can be represented
as a linear combination of the basis functions

006 Y) = e (x.y)

Let integrate the Poisson  equation
div(e,gradu) = —o(x, y,z) over the volume of the

Voronoi cell K;. We obtain the following
integral relation

| sa%dl =- J;G(X, y)ds. (1)

*

6Kpo Kpo

To obtain the system of equations for the
approximate solution we proceed as follows.
Let’s denote in the Voronoi cell K;,O (see fig. 2,a)
by P.,,m=0,6 — the grid nodes; by Q.,m=16 —
the vertices of K,f,o for the node P,, by M,
m=1,6 — the intersection points of the segment
PP, and Q,,Q,. Then the integral from (1)
over the contour aKF,0 can be approximated as

follows  (taking in
=R, Q=Q, M;=M,):

consideration  that

Jalla=y [ &%

gy =1 QQu

3 e, 200

=1 0% i+l

where |RR., are the lengths of the

and [QQ..
and |QiQi+1 *

The integral from the right-hand member of
(1) we approximate by formula:

segments |P,P,

[ o(x,y)ds = a(R)S,,

*

where So is the area of the Voronoi cell Kg .

Then the approximation of the equation (1) can
be represented in the following form

6

Z |+l)

= Po Ra

=-o(R,)S,

i+1

So the final equation for the grid node P,
takes the form

au(R, )+ZO( u(R,,) =-o(R)S,; (2)

QQu |
RR

6
o =¢£,(M,) =16; a :_Zai
i+l i=1
(P1=P7! M, =M., Q1=Q7)'

Now we can write out the equation of type (2)
for each internal grid node and we use the known
conditions for the boundary nodes. As a result,
we obtain the system of linear algebraic equations
with symmetrical matrix. It is to mention that
when solving the practically important problems
the number of equations in such systems amounts
to thousands or dozens of thousands. However,
since each equation of the type (2) contains only
some nonzero elements (usually there are from 3
to 9 nonzeros) then it turns out that the final
matrix is sufficiently sparse matrix. For inversion
of such matrices (of the band type) the Gauss
method or the square root method are commonly
used.

I1l. FLOW OF THE INTENSITY VECTOR

The obtained solution wu,(x,y) for field
potential distribution in Q permits to construct
the flow of the intensity  vector
E =(E,, E,)=-grad u. Let denote by V the flow

of vector E, passing through the unit area
element that is parallel with axis z and on the
surface of which the condition u(x,y) =const is
fulfilled. The functions u and V satisfy the
Cauchy-Riemann equations
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then the level curves (isolines) u(x,y) = const and
V(x,y)=const generate mutually orthogonal
families. The function V(x,y) can be obtained by
calculation of the following contour integral

(%)
j [audx——dyj
(X0.¥0) 6y

where x,,y, are the coordinates of an arbitrary

fixed point from Q, and the patch of integration
is situated inside of Q. In case of multiply-
connected domain the patch of integration also
can not intersect the cuts of the domain that bring
it to simply connected structure.

V(xy)=

IV. DETERMINATION OF LINEAR
CAPACITANCE AND INDUCTANCE

The capacitance C between two conducting

bodies can be computed by the formula
c=—9%4 |
U —u,

where (u,—u,) potential difference of these
bodies. The charge g of the body located inside
of the some three-dimensional domain V can be
computed in accordance with Gauss' law of flux
as a surface integral of the field intensity vector
E over surface S =oV

q :g_[l?@z—gjgradu'£=
S

_[ (gradu - n)dS_—gf—dS

S

Here by S we denoted an arbitrary surface
containing the charged body, by m — the exterior
normal vector to the surface S and by ¢ — the
permittivity.

Linear inductances for the system of wires can
be calculated according to formulas [2, §28.1]. In
the case when the transverse wire sizes are very
small in comparison with contours length and
with the distance between them, the linear self-
inductance L and the mutual linear inductance
M are calculated by the formulas:

;Uo

872

1 12

J- J- dx, dx,

47z|1 00

”dxldx .

47z|1 00

Here r is the distance between two points on
the centerline of the conductors with elements dx;
and dx,, po,=4n-107 is the magnetic constant,

11

l,=1,=1 m. For the mutual inductance, the

elements dx; and dx. belong respectively to the
conductors with the numbers 1 and 2, and for the
self-inductance these elements are chosen on the
same conductor.

V. NUMERIC RESULTS

The calculation domain (see fig. 1) represents
the square Q=(-L <x<L,0<y<L) with

L,=50 m, L,=100m, y = 0 is the earth's

surface. We suppose the value of potential of the
electric field tends to zero at the boundaries of the
square.

In order to optimize the number of nodes it is
typically used the computational grid with
variable dimensions of the cells. The density of
cells in the computational grid is higher and
increases when approaching the conductor.

The examples of computational grids for
different constructive variants of spatial location
of phase conductors in 110 kV overhead line are
represented in fig. 3.1, fig. 3.2 (phase conductors
are placed horizontally in a line) and fig. 4.1, fig.
4.2 (phase conductors are placed at the vertices of
a triangle).

Fig. 3.1. Computational grid in the square Q for
three-conductor overhead line of 110 kV when
phase conductors are placed horizontally in a line.
General view.
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Fig. 3.2. Computational grid in the vicinity of
conductors when phase conductors are placed
horizontally in a line.

Fig. 4.1. Computational grid in the square Q for
three-conductor overhead line of 110 kV when
phase conductors are placed at the vertices of a
triangle.

Fig. 4.2. Computational grid in the vicinity of
conductors when phase conductors are placed at
the vertices of a triangle.
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Fig. 5. Potential distribution (curves 1) and the flow
of electric field intensity (curves 2).

The step size of the grid in areas close to the
boundaries of the square constitutes 8 m, and as
we get closer to the conductor, the step size
decreases to the conductor radius, i.e. to 0,0108
m. Total number of computing nodes of the grid
is equal to 5160, and the number of triangular
elements is equal to 10164. Let note that to obtain
one variant of the numerical solution we need
about 200 minutes using 2GHz frequency
processor.

Figure 5 illustrates the distributions of the
electric field in 110 kV lines for examined
constructive variants. These results are obtained
for the case when the phase voltages have the
following values:

Ua=89.81 kV; Ug = Uc = —44.91 kV.

On the basis of the electromagnetic field
distributions the matrices of electrostatic
induction coefficients as well as the partial
capacitances and inductances have been
calculated. The matrices with values of linear
parameter for 110 kV line are shown in Table 1.

TABLE I. MATRICES OF LINEAR PARAMETERS
FOR DIFFERENT CONSTRUCTIVE VARIANTS OF

110 KV LINE
Parameters Location of phase Location of
conductors in parallel with phase
the ground conductors at the
vertices of a
triangle

-133 7.67 -160
-1.18 -160 7.84

B=

7.73 -1.33 -1.18
induction -236 880 -2.36 J
coefficients, -125 -236 831

Electrostatic 831 -236 -1.25
l}:
pF/m

12
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Partial 470 236 1.25 522 133 118
capacitances, C=|236 409 236 02{1-33 474 1-60J
pF/m (1.25 2.36 470} 118 160 506
Self and 154 051 038 154 033 030
mutual L=|051 154 051 L:[°-33 159 037}
inductances, [0,33 051 1,54} 030 0377 154
pH/m

V1. CONCLUSIONS

By applying the finite volume method we
have determined the electromagnetic field
distribution of three-phase AC line, taking into
account the temporal variation of the phase
voltages determined by the frequency of the
alternating current. We have determined the
capacitance and inductance values of the three-
phase line for different suspension configurations
of conductors. We have obtained the numerical
values of the linear parameters showing the
obvious differences depending on the
constructive realization and differences in
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parameter values calculated by traditional
methods and values determined on the basis of
the proposed technique. Finite volume method is
quite attractive and well suited when modeling
electrostatic problems, especially the problems
for which the flux is of importance.
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